• Title/Summary/Keyword: inclined column

Search Result 35, Processing Time 0.02 seconds

Study of apartment plan technology adopting structural element of Hanok (공동주택에 적용 가능한 한옥 평면기술에 관한 연구)

  • Park, Kyung Hyun;Roh, Young-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6366-6371
    • /
    • 2014
  • This study examined the structural elements of Korean-style houses (Hanok) and proposed formula accounting for their similar patterns and regular behavior. The design of modern apartment buildings adopts many aesthetic elements from Hanok but those are only for interior decoration. In this study, the projected Hanok eaves were examined in terms of the length of solar insolation. Leaning pillars toward the inside of the building were analyzed in detail not only for the front and back pillar, side pillar, but also the corner pillar. This study also suggested a design element from the Hanok structure, such as the elevated balcony, porch flooring, and inner garden in porch area. In addition, the new apartment plan improved air circulation, ventilation and natural lighting.

Shear Behavior of Precast Prestressed Inverted-Tee Concrete Beams with Dapped Ends (프리캐스트 프리스트레스트 콘크리트 역티형보의 댑단부 전단거동)

  • 유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.46-53
    • /
    • 2001
  • Two full scale precast pretensioned dapped ended rectangular beams designed by PCI design handbook for a major domestic live load of market and parking building - 500kgf/㎡ and 1,200kgf/㎡ were investigated experimentally. The bottom length of beams was 60cm which was same to the length of rectangular column in the base of five-story market or parking buildings. The height of dap was web hight plus half of the flange height within the allowable limit of PCI method. Shear tests were performed on four beam ends. Followings were obtained from the experimental study. All of the specimens were fully complied with the PCI design handbook. Two of four specimens which were designed for live load of 1,200kgf/㎡ showed crackings at the re-entrant corner of dap before the full service loadings, and failed by direct shear at the load level much less than their calculated nominal strength. The specimens designed for live load of 1,200kgf/㎡ failed at 772 tonf and 78.36tonf by direct shear crackings. This strength was less than PCI limit of 81.9 tonf and higher than ACI limit of 65.62tonf. Thus, the limit suggested by ACI seems more reasonable in regard of safety in view of this test results. According to load-strain curves, the strain of hanger reinforcement reached almost yield strain. It is recommended to use more inclined hanger reinforcement of improve the strength and serviceability.

THE EFFECTS OF CRANIOCERVICAL POSTURE AND THE POSITION OF TONGUE AND HYOID BONE ON CRANIOFACIAL MORPHOLOGY (두경부자세 및 혀, 설골의 위치가 두개안면헝태에 미치는 영향에 관한 연구)

  • Oh, Jin-Sub;Tae, Ki-Chul;Kook, Yoon-Ah;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.28 no.4 s.69
    • /
    • pp.499-515
    • /
    • 1998
  • The purpose of this study was to examine the associations of head posture the position of the tongue or the hyoid bone to craniofacial structure. Cephalograms taken in Natural head position(NHP) of 90 dental students (50 in male, 40 in female, 20 to 30 years in age) were traced and measured using the extracranial true horizontal and vertical lines. The obtained results were as follows; 1. There was no sex difference in head posture, but the hyoid bone was placed anteroinferiorly in male more than in female and anteroinferior inclination of the hyoid bone showed greatly in male. 2. The more inclined was the cervical column, the less prognathic was the face in natural head posture, and the larger cervical curvature, the more vertical pattern of the face. 3. The less small showed craniocervical angulation, the more anteriorly placed was the hyoid bone to the cranial base, and there was no significantly association between craniocervical angulation and the vertical position of the hyoid bone. 4. The more prognathic was the mandible, the more anteriorly placed was the hyoid bone, and there was slightly association between the craniofacial morphology and the vertical position of the hyoid bone.

  • PDF

The Strengthening Effects of Concrete Columns Confined with Carbon Fiber Sheets along the Fiber Direction (탄소섬유쉬트 올방향에 따른 콘크리트 기둥 보강성능)

  • Kim, Yang-Jung;Hong, Gap-Pyo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.326-332
    • /
    • 2011
  • Carbon, Aramid, Boron and Glass fibers are used as fibrous materials to promote structural bearing strength. Of these fiber types, carbon fiber is the most commonly used material, and is characterized by having a one-way direction, which is strengthened by tensile strength due to the attached direction only, while other types of fibers are two-way. Therefore, when applied in the field, the attachment direction of fiber is a very important factor. However, when fiber direction is not mentioned in the design drawing, there sometimes is no improvement in structural strength, as the fiber is being installed by a site engineer or workers who lack structural knowledge. The purpose of this study was to propose an optimal direction of carbon fiber through a comparison & analysis of reinforcing efficiency with reinforced experimental columns that used carbon fibers in each of the inclined, horizontal and vertical directions. According to the results, horizontal direction in the reinforced column was improved by 153.43%, but vertical direction was 104.61% only, and it was understood this was due to increased tensile strength along the fiber direction. For this reason, it is necessary to include information regarding fiber direction in design and site management.

Seismic analysis of tunnel considering the strain-dependent shear modulus and damping ratio of a Jointed rock mass (절리암반의 변형률 의존적 전단탄성계수 및 감쇠비 특성을 고려한 터널의 내진 해석)

  • Song, Ki-Il;Jung, Sung-Hoon;Cho, Gye-Chun;Lee, Jeong-Hark
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.4
    • /
    • pp.295-306
    • /
    • 2010
  • Contrary to an intact rock, the jointed rock mass shows strain-dependent deformation characteristics (elastic modulus and damping ratio). The maximum elastic modulus of a rock mass can be obtained from an elastic wave-based exploration in a small strain level and applied to seismic analyses. However, the assessment and application of the non-linear characteristics of rock masses in a small to medium strain level ($10^{-4}{\sim}0.5%$) have not been carried out yet. A non-linear dynamic analysis module is newly developed for FLAC3D to simulate strain-dependent shear modulus degradation and damping ratio amplification characteristics. The developed module is verified by analyzing the change of the Ricker wave propagation. Strain-dependent non-linear characteristics are obtained from disks of cored samples using a rock mass dynamic testing apparatus which can evaluate wave propagation characteristics in a jointed rock column. Using the experimental results and the developed non-linear dynamic module, seismic analyses are performed for the intersection of a shaft and an inclined tunnel. The numerical results show that vertical and horizontal displacements of non-linear analyses are larger than those of linear analyses. Also, non-linear analyses induce bigger bending compressive stresses acting on the lining. The bending compressive stress concentrates at the intersection part. The fundamental understanding of a strain-dependent jointed rock mass behavior is achieved in this study and the analytical procedure suggested can be effectively applied to field designs and analyses.