• 제목/요약/키워드: inclination of vehicle

검색결과 35건 처리시간 0.024초

레일 경좌 변화에 따른 곡선부 통과열차의 주행안전성 해석 (Running Safety Analysis of Railway Vehicle passing through Curve depending on Rail Inclination Change)

  • 김문기;엄범규;이희성
    • 한국소음진동공학회논문집
    • /
    • 제23권3호
    • /
    • pp.199-208
    • /
    • 2013
  • So far today, there is a speed limit by the radius of curve based on operation regulation in domestic railway, however a study for the maximum running speed at the curved section without any derailment would be necessary. The two major factors related to the running safety of railway vehicle are classified as the railway vehicle condition and the track condition. In terms of the rail inclination among many other factors, the determination of rail inclination within the possible limit is necessary for the geometrical structure of the optimum track. The disregard of the geometrical parameter related to the rail inclination may cause a serious problem to the running safety of railway vehicle. This study is focusing on the analyzing of running safety regard to the change of rail inclination among the many other parameters to improve derailment safety, so that there is an affection analysis of the running safety regard to the change of rail inclination in the ideal and geometric track condition. Also There is an affection analysis of the running safety regard to the simultaneous change of rail inclination and the running speed at the curved section. According to analysis results of running safety, In case that the left and right rail inclination are 1/40, the running safety of this condition defined than other conditions. Also, the rail inclination of conventional lines is 1/40, Therefore, the railway vehicle passing through curve is safe when the railway vehicle runs in conventional lines.

곡선부 통과열차의 레일 경좌 변화에 따른 주행안전성 해석 (A Running Safety Analysis of Railway Vehicle passing through Curve According to Rail Inclination Change)

  • 손명선;엄범규;강부병;이희성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1922-1928
    • /
    • 2011
  • The rail inclination produces a wider bearing area between the wheel and the rail by moving the wheel rail contact area away from the gauge towards the centre of the railhead, thus improving the wear pattern of the railhead and wheel treads. It is essential to keep the rail inclination within the allowable range to ensure optimum track geometry. Neglecting the rail inclination geometrical parameters in a track quality evaluation can cause safety of railway vehicle and serviceability problems. In this paper, we examined the effect of the rail inclination in general geometry state of the railway track using VI-Rail and analyzed running safety when the railway vehicle passing through curves depending on change of the rail inclination and running speed.

  • PDF

3호선 실제선로 조건에서의 레일경좌 변화에 따른 철도차량 주행안전성 해석 (Running Safety Analysis of Railway Vehicle depending on Rail Inclination Change on Actual Track of Subway Line No.3 in Seoul)

  • 김태건;이희성
    • 한국안전학회지
    • /
    • 제31권3호
    • /
    • pp.130-135
    • /
    • 2016
  • It is very hard to analyze the train derailment safety quantitatively at the curved section because of the diversified affect parameters including the complex interaction between wheel and rail, the train conditions such as the shape of wheel, suspension system, the track conditions such as the radius of curve, cant, transition curve, and the operation conditions, etc. Two major factors related to the running safety of railway vehicle are classified as the railway vehicle and the track condition. In this study, when the railway vehicle passing through curves of actual track condition of subway line NO.3 in seoul ($Yeonsinnae{\leftrightarrow}Gupabal$), the effect that has influence on running safety depending on rail inclination. The analysis result of 1/40 rail inclination condition is more favorable on running safety than other rail inclination conditions because derailment coefficient and wheel unloading ratio are the lowest.

도어 임팩트 빔의 3점 굽힘 최대강도와 차량 장착 시 굽힘 좌굴강도와의 관계 (The Relation of Bending Buckling Strength in Vehicle and Three Point Bending Maximum Strength of Door Impact Beam)

  • 강성종;이상민
    • 자동차안전학회지
    • /
    • 제11권1호
    • /
    • pp.40-47
    • /
    • 2019
  • First, three point bending analysis for the inclined press door impact beam was carried out to investigate inclination angle effect on the maximum strength with varying support distance. Next, for the system model with spring elements representing body stiffness at door mounting area, the bending structural behavior of impact beam mounted on vehicle was estimated. The mounting distance and inclination angle were changed and the beam bending buckling strength was presumed at the head displacement below which spring stiffness change has little effect on the load. Finally strength ratio to predict the bending buckling strength of impact beam mounted on vehicle from three point bending maximum strength of fixed support distance was suggested.

차량 하중 변동에 따른 전조등 컷오프라인 자동 보상에 대한 연구 (A Study on Automatic Compensation for Head Lamps Cut-off Line Under Load Variation)

  • 김기현;김준현;변동규;이동익
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.92-97
    • /
    • 2011
  • Vehicle lightings are very important for safe driving during night time. Since the eye recovery time after an exposure to oncoming headlights would take after several seconds, the aiming point of vehicle head lamps have to pass safety requirements. Despite the fact that vehicle inclination is variable with vehicle load conditions, the head lamps aiming point is usually fixed at a constant position which is set by car manufacturer. Consequently, vehicle head lamps under varying load conditions often make people in the opposing vehicle uncomfortable, and even worse, can cause an accident. This paper presents an active vehicle lighting mechanism to automatically adjust its aiming point, or cut-off line, in order to compensate the change in vehicle inclination resulting from load variations. The effectiveness of the proposed method is demonstrated through a set of simulations and experiments with a real vehicle.

A Control Method of Driving a Paddy Vehicle Straight Ahead for Automatic Operation

  • Nagasaka, Yoshisada;Shigeta, Kazuto;Sato, Junichi
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.1055-1062
    • /
    • 1996
  • A method for automatically driving paddy vehicles, such as rice transplanters, etc., straight ahead in a paddy field was investigated . The direction of such vehicles must be precisely controlled to do the operations as straight. However, the alignment of the from wheels becomes distorted due to the unevenness of the ground, preventing the vehicle form going straight. If the proper alignment of the front wheels is maintained , the vehicle can be driven straight ahead greater precision. To investigate the influence of the ground uneveness, the behavior of a paddy vehicle running over an obstacle was quantified. The left wheel ran over an obstacle on a flat concrete road surfaced. When the steering wheel was free, the front wheels were forced toward the left when vehicle went up the obstacle and toward the right when the vehicle went down it. The torsion of the wheel when the vehicle went down the obstacle was larger than that when it went up ,so it turned right 5 degrees. Sinc hydraulic control steering decreased the steering angle , it turned right 3 degrees. These results suggest that a vehicle can be driven straight ahead with high precision when the steering angle is changed in response to the direction and inclination of the vehicle . Such results were obtained in a paddy field tests.

  • PDF

EXPERIMENTAL EVALUATION OF USED CARS FOR FRONTAL COLLISION COMPATIBILITY

  • Lim, J.H.;Park, I.S.;Heo, S.J.
    • International Journal of Automotive Technology
    • /
    • 제7권6호
    • /
    • pp.715-720
    • /
    • 2006
  • This research investigates injury values and vehicle deformation for vehicle frontal crash compatibility. To investigate compatibility in an individual case, it is possible to impact two vehicles and evaluate the injury values and deformations in both vehicles. In this study, four tests were conducted to evaluate compatibility. A large and mini vehicle were subjected to a frontal car-to-car crash test at a speed of 48.3 km/h with an offset of 40%. An inclination car-to-car crash test using the large and small vehicle were conducted at 30 km/h at a $30^{\circ}$ angle. The results of the 48.3 km/h, car-to-car frontal crash revealed extremely high injury values on the chest and upper leg of the Hybrid III 50% driver dummy with seatbelt in the mini vehicle compared to the large vehicle. For the 30 km/h, car-to-car inclination crash, however, injury values in the small vehicle were 1.5 times higher compared to the large vehicle.

철도차량의 Roll 특성에 관한 연구 (A Study for Roll characteristic of Railway Vehicle)

  • 양희주;이강운;박길배;성재호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.1184-1189
    • /
    • 2006
  • Railway vehicle have three translational motions-longitudinal, vertical and lateral, and three rotational motions-rolling, pitching and yawing caused by track irregularity, wheel and rail characteristic, dynamic behaviors etc. The rolling motion in vehicle mainly happens in cases of the vehicles stationary and running on canted track. When the vehicle positioned in stationary on canted track, vehicle is inclined toward inside of installed cant due to gravity component. When the vehicle has running on a track with cant deficiency, vehicle is inclined toward outside of installed cant due to centrifugal force. The roll coefficient(s) is defined as the ratio between the angle of inclination of the vehicle($\eta$) and the angle of the rail level($\alpha$). This paper has noted the test method, test result and analysis result to calculate the roll coefficient according to UIC505-5, international standard

  • PDF

축소모델을 이용한 차륜답면형상 답면구배에 따른 안정성 평가 (Stability Evaluation of the Railway Bogie According to the Tread Inclination of Wheel Profile Using Scale Model)

  • 허현무;유원희;김남포;박태원
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1099-1107
    • /
    • 2009
  • Numerical simulation and experimental study to evaluate the critical speed of the railway bogie according to the tread inclination of wheel profile were conducted using 1/5 scale model. It has been shown that the results of the critical speed analysis for the scale bogie model is very close to the test results using scale bogie model and the critical speed is decreased in proportion to the increase of equivalent conicity of wheel profile. Results of this study show that the scale model could be applied to research area relating to vehicle stability as an alternative to overcome the experimental problems caused by full scale test on the roller rig.

실제 선로조건에서의 레일 경좌 변화에 따른 철도차량의 주행안전성 해석 (Running Safety Analysis of Railway Vehicle Depending on Railway Inclination Change Under Actual Track Conditions)

  • 김문기;엄범규;이희성
    • 대한기계학회논문집A
    • /
    • 제37권11호
    • /
    • pp.1437-1443
    • /
    • 2013
  • 현재 국내선로에서 운전규정에 따른 곡선반경별 속도제한을 실행하고 있으나 기존선 속도 향상과 관련하여 실제로 탈선 발생 없이 운행 가능한 곡선부 최대 통과속도에 대한 연구가 필요하다. 또한, 철도차량의 주행안전성에 영향을 미치는 요인으로서는 차량측면과 궤도측면으로 나눠질 수 있는데, 본 연구에서는 탈선 안전도 향상에 영향을 미치는 매개변수 중 레일 경좌 변화에 따른 주행안전성을 해석하고자 하였다. 탈선의 위험도가 높은 곡선부 통과하는 열차의 고속향상을 도모하기 위하여 실제 선로조건인 남성현${\leftrightarrow}$청도 상 하행 구간의 곡선부 구간별 통과시 레일 경좌와 주행속도 변화에 따른 주행안전성 해석을 수행하였다.