• Title/Summary/Keyword: incident waves

Search Result 539, Processing Time 0.026 seconds

Characteristics of Wave-induced Currents using the SWASH Model in Haeundae Beach (SWASH 모형을 이용한 해운대 해수욕장의 해빈류 특성)

  • Kang, Min Ho;Kim, Jin Seok;Park, Jung Kyu;Lee, Jong Sup
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.6
    • /
    • pp.382-390
    • /
    • 2015
  • To simulate a complicated hydrodynamic phenomena in the surf zone, the SWASH model is used in Haeundae Beach. The SWASH model is well known as a model competing with the Boussinesq-type model in terms of near shore waves and wave-induced currents modelling. This study is aimed to the detailed analysis of seasonal waves and wave-induced current simulation in Haeundae Beach, where the representative seasonal wave conditions was obtained from hourly measured wave data in 2014 by Korea Hydrographic and Oceanographic Administration( KHOA). Incident wave conditions were given as irregular waves by JONSWAP spectrum. The calculated seasonal wave-induced current patterns were compared with the field observation data. In summer season, a dominant longshore current toward the east of the beach appears due to the effect of incident waves from the South and the bottom bathymetry, then some rip currents occurs at the central part of the beach. In the winter season, ESE incident waves generates a strong westward longshore currents. However, a weak eastward longshore currents appears at the restricted east side areas of the beach.

Numerical Simulation on Longshore Current Produced by Random Sea Waves (불규칙파에 의한 연안류의 수치계산)

  • 권정곤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.1
    • /
    • pp.54-64
    • /
    • 1991
  • To accurately estimate the rate of sediment transport in shallow water bodies, it is necessary to investigate the irregular waves transformation characteristics and nearshore currents produced by random sea waves. Most of studies on numerical models for nearshore currents are based on the theory of monocromatic waves and thus, very few nearshore models take into account the effect of irregularities in the hight, period and directional spreading of incident waves. The numerical simulation model for nearshore currents used in this paper considers the effect of irregularities of incident waves, based on Individual Wave Analysis. The computational results are compared and shown in a reasionable agreement with the experimental data.

  • PDF

Scattering Wave Spectrum by a Pile Breakwater in Directional Irregular Waves (다방향 불규칙 파랑중 파일 방파제에 의한 산란파 스펙트럼)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.586-595
    • /
    • 2007
  • The analytic solution of wave scattering of monochromatic waves on a pile breakwater by an eigenfunction expansion method is extended to the case of directional irregular waves. The scattering wave spectrum and the force spectrum can be expressed from the reflection coefficient, transmission coefficient and the wave forces obtained from changing frequencies and incident angles in monochromatic waves. By numerical integration of 2-dimensional spectrum which is function of frequencies and incident angles, the representative values for the scattered waves and wave forces are obtained and the dependence of the transmission coefficients and wave forces on the directional distribution function, the principal wave direction, the submergence depth, and porosity is analyzed.

Numerical Analysis of Four Circular Columns in Square Array and Wave Interaction (파랑과 정사각형 배열의 원형 기둥 구조물의 상호작용 수치해석)

  • Song, Seongjin;Park, Sunho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.558-565
    • /
    • 2017
  • Accurate prediction of wave-structure interactions is important in the safety and design cost effectiveness of fixed and floating offshore structures exposed to extreme environmental conditions. In this study, regular waves and circular column structure interactions for four circular columns in regular waves are analyzed. To simulate 3D two-phase flow, open source computational fluid dynamics libraries, called OpenFOAM, were used. When the four circular columns are arranged in a square array, the interactions according to the incident slopes of the regular waves are analyzed. The wave run-up in the circular column surface was compared according to the slope of the incident wave. It was confirmed that high amplitude waves are generated between the circular columns due to the interaction between the circular column and the incident wave. It is expected that this analytical result will be used as the basic data of the study on the air gap due to the interaction between the structure and incident wave.

Spatial Distribution of Wave Overtopping along Vertical Structure due to Obliquely Incident Waves (경사입사파에 의한 직립구조물에서 월파의 공간적 분포)

  • Kim, Young-Taek;Lee, Jong-In;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.414-421
    • /
    • 2011
  • In determination of the crest height of a vertical structure against attacking of obliquely incident waves, most of existing studies have suggested to use the overtopping reduction factor due to incident angles. However, they have not considered the amplification of wave heights and the spatial distribution of wave overtopping. In this study, a spatial distribution of overtopping due to the amplification of wave heights along a vertical structure is investigated experimentally. It is recommended that the crest height can be determined by the same manner as that for normally incident waves up to 3 significant wave lengths from the one end of the structure. However, the rest part of the structure can be done by employing the overtopping reduction factor with considering the amplification of wave heights and the spatial distribution of wave overtopping.

2D Computational Analysis of Overtopping Wave Energy Convertor

  • Liu, Zhen;Hyun, Beom-Soo;Jin, Ji-Yuan
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.1-6
    • /
    • 2009
  • An Overtopping Wave Energy Convertor (OWEC) is an offshore wave energy convertor used for collecting overtopping waves and converting the water pressure head into electric power through hydro turbines installed in a vertical duct affixed to the sea bed. A numerical wave tank based on the commercial computational fluid dynamics code Fluent is established for the corresponding analysis. The Reynolds Averaged Navier-Stokes equation and two-phase VOF model are utilized to generate the 2D numerical linear propagating waves, which are validated by the overtopping experiment results. Calculations are made for several incident wave conditions and shape parameters for the overtopping device. Both the incident wave periods and heights have evident effects on the overtopping performance of the OWEC device. The computational analysis demonstrates that the present overtopping device is more compatible with longer incident wave periods.

Non-Destructive Detection of Hertzian Contact Damage in Ceramics

  • Ahn, H.S.;Jahanmir, S.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.114-121
    • /
    • 1995
  • An ultrasonic technique using normal-incident compressional waves was used to evaluate the surface and subsurface damage in ceramics produced by Hertzian indentation. Damage was produced by a blunt indenter (tungsten carbide ball) in glass-ceramic, green glass and silicon nitride. The damage was classified into two types; (1) Hertzian cone crack, in green glass and fine grain silicon nitride, and (2) distributed subsurface micro fractures, without surface damage, produced in glass ceramic. The ultrasonic technique was successful in detecting cone craks. The measurement results with the Hertzian cone cracks indicated that cracks perpendicular to the surface could be detected by the normal-incident compressional waws. Also shown is the capability of normal-incident compressional waves in detection distributed micro-sized cracks size of subsurface microfractures.

A study on the wave forces acting on the multiple plils of oceanic circular cylinder (해양원주 구조물에 작용하는 파력에 관한 연구)

  • 오세욱;문병형;이승휘
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.28-38
    • /
    • 1987
  • Experimental studies are conducted for the wave forces acting on the vertically mounted circular piles in the waves. Two-three-cylinder arrays are equally spaced and the spacings(S/D) as well as the incident angles of various waves are changed to study their separate effects on the wave forces. The numerical results based on the diffraction theory are in good agreement with the experimental results, and the diffraction theory well predicts the trend of the wave forces when the spacings and the incident angles are changed.

  • PDF

Incident-angle-based Selective Tunability of Resonance Frequency in Terahertz Planar Metamolecules

  • Lim, A Young;Lee, Joong Wook
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.590-597
    • /
    • 2022
  • We carry out numerical simulations of the responses of planar metamaterials composed of metamolecules under obliquely incident terahertz waves. A Fano-like-resonant planar metamaterial, with two types of resonance modes originating from the two meta-atoms constituting the meta-molecules, exhibits high performance in terms of resonance strength, as well as the outstanding ability to manipulate the resonance frequency by varying the incident angle of the terahertz waves. In the structure, the fundamental electric dipole resonance associated with Y-shaped meta-atoms is highly tunable, whereas the inductive-capacitive resonance of C-shaped meta-atoms is relatively omnidirectional. This is attributed to the electric near-field coupling between the two types of meta-atoms. Our work provides novel opportunities for realizing terahertz devices with versatile functions, and for improving the versatility of terahertz sensing and imaging systems.

Experimental Comparison of the Wave Force on Crown Wall of Sloping Breakwater Armored with Tetrapods under Obliquely Incident Waves (경사입사 시 테트라포드로 피복된 경사제 상부구조물에 작용하는 파력 비교 실험)

  • Oh, Sang-Ho;Lee, Jooyeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.3
    • /
    • pp.161-169
    • /
    • 2020
  • Physical experiments have been performed in a wave basin to investigate change of the wave loading on the crown wall under obliquely incident wave conditions. The measurement was carried out with wave incidence angle of 0, 15, 30 and 45°. The pressure transducers were placed on the front and bottom face of the crown wall to obtain horizontal and uplift force as well. It was found that both the horizontal and vertical force decreases with the incidence angle. Based on the analysis of the experimental data, a formula was suggested to estimate the reduction rate of horizontal and vertical forces under obliquely incident waves.