DOI QR코드

DOI QR Code

Numerical Analysis of Four Circular Columns in Square Array and Wave Interaction

파랑과 정사각형 배열의 원형 기둥 구조물의 상호작용 수치해석

  • Song, Seongjin (Department of Ocean Engineering, Korea Maritime and Ocean University) ;
  • Park, Sunho (Department of Ocean Engineering, Korea Maritime and Ocean University)
  • 송성진 (한국해양대학교 해양공학과) ;
  • 박선호 (한국해양대학교 해양공학과)
  • Received : 2017.06.01
  • Accepted : 2017.08.28
  • Published : 2017.08.31

Abstract

Accurate prediction of wave-structure interactions is important in the safety and design cost effectiveness of fixed and floating offshore structures exposed to extreme environmental conditions. In this study, regular waves and circular column structure interactions for four circular columns in regular waves are analyzed. To simulate 3D two-phase flow, open source computational fluid dynamics libraries, called OpenFOAM, were used. When the four circular columns are arranged in a square array, the interactions according to the incident slopes of the regular waves are analyzed. The wave run-up in the circular column surface was compared according to the slope of the incident wave. It was confirmed that high amplitude waves are generated between the circular columns due to the interaction between the circular column and the incident wave. It is expected that this analytical result will be used as the basic data of the study on the air gap due to the interaction between the structure and incident wave.

해양환경의 극한 환경조건에 노출 된 고정식 및 부유식 해양구조물의 안전성과 설계비용 효율성에 있어서 파랑-구조물 상호작용의 정확한 예측은 중요하다. 본 연구에서는 규칙파 중 원형 기둥에 대한 파랑-구조물 상호작용을 해석하였다. 3차원 이상유동(two-phase flow)을 해석하기 위해 오픈소스 전산유체역학 라이브러리인 오픈폼을 사용하였다. 4개의 원형기둥이 정사각형 배열을 이루고 있을 때 규칙파의 입사각도에 따른 상호작용을 해석하였다. 원형 기둥 구조물에서의 wave run-up을 입사파의 기울기에 따라 비교하였다. 원형 기둥과 입사파의 상호작용으로 인해 원형 기둥 사이에 높은 파가 생성되는 것을 확인하였다. 본 해석 결과는 구조물과 입사파의 상호작용에 의한 air gap에 대한 연구의 기초자료로 활용될 것으로 기대된다.

Keywords

References

  1. Afshar, M. A.(2010), Numerical Wave Generation in OpenFOAM, Master's thesis, Chalmers University of Technology, Goteborg, Sweden.
  2. Barlas, B.(2012), Interaction of waves with an array of tandem placed bottom-mounted cylinders, Journal of Marine Science and Technology, Vol. 20, No. 1, pp. 103-110.
  3. Bockmann, A., C. Pakozdi, T. Kristiansen, H. Jang and J. Kim(2014), An Experimental and Computational Development of a Benchmark Solution for the Validation of Numerical Wave Tanks, Proceedings of the ASME 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, California, USA.
  4. Bredmose, H. and N. G. Jacobsen(2010), Breaking wave impacts on offshore wind turbine foundations: focused wave groups and CFD, Proceedings of the ASME 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, pp. 397-404.
  5. Buchmann, B., J. Skourup and K. F. Cheung(1998), Run-up on a structure due to second-order waves and a current in a numerical wave tank, Applied Ocean Research, Vol. 20, No. 5, pp. 297-308. https://doi.org/10.1016/S0141-1187(98)00022-4
  6. Danmeier, D. G., R. K. Seah, T. Finnigan, D. Roddier, A. Aubault, M. Vache and J. T. Imamura(2008), Validation of wave run-up calculation methods for a gravity based structure, Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, pp. 265-274.
  7. Eatock Taylor, R. and G. X. Wu(1997), Interaction of steep waves with offshore structures, Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, Vol. 355, pp. 593-605. https://doi.org/10.1098/rsta.1997.0027
  8. Evans, D. V. and R. Poter(1997), Near-trapping of waves by circular arrays of vertical cylinders, Applied Ocean Research, Vol. 19, pp. 83-99. https://doi.org/10.1016/S0141-1187(97)00015-1
  9. Geng, B. L., B. Teng and D. Z. Ning(2010), A time-domain analysis of wave force on small-scale cylinders of offshore structures, Journal of Marine Science and Technology, Vol. 18, pp. 875-882.
  10. Higuera, P., J. L. Lara and I. J. Losada(2013a), Realistic wave generation and active wave absorption for Navier Stokes models: Application to $OpenFOAM{(R)}$, Coastal Engineering, Vol. 71, pp. 102-118. https://doi.org/10.1016/j.coastaleng.2012.07.002
  11. Higuera, P., J. L. Lara and I. J. Losada(2013b), Simulating coastal engineering processes with $OpenFOAM{(R)}$, Coastal Engineering, Vol. 71, pp. 119-134. https://doi.org/10.1016/j.coastaleng.2012.06.002
  12. Jacobsen, N. G., D. R. Fuhrman and J. Fredsoe(2012), A wave generation toolbox for the open-source CFD library: OpenFOAM, International Journal for Numerical Methods in Fluids, Vol. 70, No. 9, pp. 1073-1088. https://doi.org/10.1002/fld.2726
  13. Kriebel, D. L.(1992), Nonlinear wave interaction with a vertical circular cylinder. Part II: Wave run-up, Ocean Engineering, Vol. 19, No. 1, pp. 75-99. https://doi.org/10.1016/0029-8018(92)90048-9
  14. McCamy, R. and R. Fuchs(1954), Wave forces on piles: a diffraction theory. Technical memo, U.S. Washington D.C.: Army Corps of Engineers.
  15. Niedzwecki, J. M. and A. S. Duggal(1992), Wave runup and forces on cylinders in regular and random waves. Journal of Waterway Port, Coastal, and Ocean Engineering, Vol. 118, No. 6, pp. 615-634. https://doi.org/10.1061/(ASCE)0733-950X(1992)118:6(615)
  16. Palomares, G. D.(2015), CFD Simulations on a Partially Submerged Cylinder under Regular Waves Using OPENFOAM, Master's thesis, University of Stavanger, Norway.
  17. Scolan, Y. M. and S. Malenica(1998), Experimental and numerical second-order diffracted waves around an array of 4 cylinders, Proceedings of the 13th International Workshop on Water waves and Floating Bodies, Delft.
  18. Seiffert, B., M. Hayatdavoodi and R. C. Ertekin(2014), Experiments and computations of solitary-wave forces on a coastal-bridge deck. Part I: flat plate, Coastal Engineering, Vol. 88, pp. 194-209. https://doi.org/10.1016/j.coastaleng.2014.01.005
  19. Sun, L., J. Zang, L. Chen, R. E. Taylor and P. H. Taylor(2016), Regular waves onto a truncated circular column: A comparison of experiments and simulations, Applied Ocean Research, Vol. 59, pp. 650-662. https://doi.org/10.1016/j.apor.2016.03.011
  20. Song, S. and S. Park(2017), Analysis on Interaction of Regular Waves and a Circular Column Structure, Journal of the Korean Society for Marine Environment and Energy, Vol. 20, No. 2, pp. 63-75. https://doi.org/10.7846/JKOSMEE.2017.20.2.63

Cited by

  1. Numerical Study on Roughness Effect for Axi-symmetry Submerged Body in High Reynolds Number vol.24, pp.2, 2018, https://doi.org/10.7837/kosomes.2018.24.2.246