• Title/Summary/Keyword: incidence of gray mold

Search Result 52, Processing Time 0.03 seconds

Bacillus subtilis S1-0210 as a Biocontrol Agent against Botrytis cinerea in Strawberries

  • Hang, Nguyen Thi Thu;Oh, Soon-Ok;Kim, Gyoung-Hee;Hur, Jae-Seoun;Koh, Young-Jin
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.59-63
    • /
    • 2005
  • Bacillus subtilis S1-0210 was selected as a biological agent against Botrytis cinerea in strawberry. The isolate inhibited mycelial growth of B. cinerea in vitro tests. A wettable powder formulation of B. subtilis S1-0210 significantly reduced infection rates with lower than 5%, compared with higher than 70% of infection rates in untreated control. The formulation showed 85 to 89% control efficacies of gray mold incidences on fruits of strawberry in pots. Pre-treatment of the agent was more effective in controlling gray mold on fruits and leaves than post-treatment at the early stage of disease development. The formulation also showed 70% control efficacy of gray mold incidence on fruits of strawberry in a field trial. The results indicate that B. subtilis S1-0210 in the wettable powder formulation may be a potential biocontrol agent to control gray mold on strawberry.

Forecasting Leaf Mold and Gray Leaf Spot Incidence in Tomato and Fungicide Spray Scheduling (토마토 재배에서 점무늬병 및 잎곰팡이병 발생 예측 및 방제력 연구)

  • Lee, Mun Haeng
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.376-383
    • /
    • 2022
  • The current study, which consisted of two independent studies (laboratory and greenhouse), was carried out to project the hypothesis fungi-spray scheduling for leaf mold and gray leaf spot in tomato, as well as to evaluate the effect of temperature and leaf wet duration on the effectiveness of different fungicides against these diseases. In the first experiment, tomato leaves were infected with 1 × 104 conidia·mL-1 and put in a dew chamber for 0 to 18 hours at 10 to 25℃ (Fulvia fulva) and 10 to 30℃ (Stemphylium lycopersici). In farm study, tomato plants were treated for 240 hours with diluted (1,000 times) 30% trimidazole, 50% polyoxin B, and 40% iminoctadine tris (Belkut) for protection of leaf mold, and 10% etridiazole + 55% thiophanate-methyl (Gajiran), and 15% tribasic copper sulfate (Sebinna) for protection of gray leaf spot. In laboratory test, leaf condensation on the leaves of tomato plants were emerged after 9 hrs. of incubation. In conclusion, the incidence degree of leaf mold and gray leaf spot disease on tomato plants shows that it is very closely related to formation of leaf condensation, therefore the incidence of leaf mold was greater at 20 and 15℃, while 25 and 20℃ enhanced the incidence of gray leaf spot. The incidence of leaf mold and gray leaf spot developed 20 days after inoculation, and the latency period was estimated to be 14-15 days. Trihumin fungicide had the maximum effectiveness up to 168 hours of fungicides at 12 hours of wet duration in leaf mold, whereas Gajiran fungicide had the highest control (93%) against gray leaf spot up to 144 hours. All the chemicals showed an around 30-50% decrease in effectiveness after 240 hours of treatment. The model predictions in present study could be help in timely, effective and ecofriendly management of leaf mold disease in tomato.

Selection of KYC 3270, a Cellulolytic Myxobacteria of Sorangium cellulosum, against Several Phytopathogens and a Potential Biocontrol Agent against Gray Mold in Stored Fruit

  • Kim, Sung-Taek;Yun, Sung-Chul
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.257-265
    • /
    • 2011
  • During 2002-2008 in Korea, 455 extracts from myxobacteria consisting of 318 cellulolytic and 137 bacteriolytic myxobacteria were isolated, which were then screened for antifungal activity against the phytopathogens Botrytis cinerea, Colletotrichum acutatum, Penicillium sp., Pyricularia grisea, and Phytophthora capsici. 204 isolates had antifungal activity, causing both a clear zone due to blocked spore germination and inhibition of mycelial growth; most (199) were from cellulolytic (Sorangium cellulosum) and only five were from bacteriolytic myxobacteria. B. cinerea, the best controlled among the five tested pathogens, had a unique group of antifungal isolates of myxobacterial extracts compared to the other pathogens' groups. Among seventy-nine bioactive myxobacteria, four isolates, KYC 3130, KYC 3247, KYC 3248 and KYC 3270, were selected and all were cellulolytic. Liquid culture filtrates of these four myxobacteria were applied to tomato, cherry tomato, strawberry, and kiwi fruits 5 h before inoculation with gray mold conidia; then the treated fruits were placed in an airtight container and the experiment was repeated six to eight times. Incidence (%) of gray mold on fruit of the infected control treatment was 84-98%, whereas it was only 5-21% after the KYC 3270 treatment. After KYC 3270 treatment of the four fruits, mold control was 79-95%, which was highest among the filtrates and statistically the same as treatment with fludioxonil, a registered chemical against gray mold of stored fruits.

Occurrence of Gray Mold on Blueberry Trees Caused by Botrytis cinerea in Korea (Botrytis cinerea에 의한 블루베리 잿빛곰팡이병의 한국 내 발생)

  • Hong, Sung-Kee;Choi, Hyo-Won;Lee, Young-Kee;Lee, Sang-Yeob;Kim, Wan-Gyu
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.213-216
    • /
    • 2011
  • Gray mold symptoms were frequently observed on green twigs, blossoms, leaves, and fruits of blueberry trees grown in greenhouses in Cheongyang, Dangjin, Daejeon, and Jeju during disease survey in eight locations of Korea from 2007 to 2010. The disease symptoms were not observed in the fields of the other locations investigated. The disease incidence ranged 1~30% in the greenhouses investigated. A total of 27 single spore isolates of Botrytis species were obtained from the gray mold symptoms, and all the isolates were identified as Botrytis cinerea based on their morphological and cultural characteristics. Four isolates of the fungus were tested for pathogenicity to leaves of four varieties of blueberry trees by artificial inoculation with conidial suspensions. All the tested isolates caused gray mold symptoms on the leaves, which were similar to those observed in the greenhouses. This is the first report that B. cinerea causes gray mold of blueberry trees grown in greenhouses in Korea.

Bacillus sp. BS061 Suppresses Gray Mold and Powdery Mildew through the Secretion of Different Bioactive Substances

  • Kim, Young-Sook;Song, Ja-Gyeong;Lee, In-Kyoung;Yeo, Woon-Hyung;Yun, Bong-Sik
    • Mycobiology
    • /
    • v.41 no.3
    • /
    • pp.164-166
    • /
    • 2013
  • A Bacillus sp. BS061 significantly reduced disease incidence of gray mold and powdery mildew. To identify the active principle, the culture filtrate was partitioned between butanol and water. The antifungal activity against B. cinerea was evident in the butanol-soluble portion, and active substances were identified as cyclic lipopeptides, iturin A series, by nuclear magnetic resonance spectrometry (NMR) and mass analysis. Interestingly, antifungal activity against powdery mildew was observed in the water-soluble portion, suggesting that cyclic lipopeptides have no responsibility to suppress powdery mildew. This finding reveals that biocontrol agents of Bacillus origin suppress gray mold and powdery mildew through the secretion of different bioactive substances.

Effect of Chlorine Dioxide on Freshness of 'Maehyang' Strawberries during Export

  • Kim, Hye Min;Hwang, Seung Jae
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.626-633
    • /
    • 2016
  • The objective of this study was to assess the effect of precooling and application of gaseous $ClO_2$ on the retention of freshness and quality of 'Maehyang' strawberry fruits intended for export. 'Maehyang' strawberry fruits (Fragaria ${\times}$ ananassa Duch.) were grown in commercial greenhouses and then harvested. Fruits of uniform and medium size at 60% ripeness were selected and assigned to one of four treatment groups: non-treatment (control), precooling only (PO), gaseous $ClO_2$ only (GCO) or precooling combined with gaseous $ClO_2$ (P + C). Weight loss was lowest in the PO treatment and greatest in the GCO treatment after export. Compared to the control and PO treatment groups, strawberry fruits in the GCO treatment group maintained high brightness and high chroma. Six days after shipping, fruits in the P + C treatment group had the highest soluble solids content, even as high as $10.05^{\circ}Brix$; the lowest value was observed in the PO treatment. The incidence rate of gray mold in strawberry fruits was 20% and 17% in the control and the PO treatment, respectively; in the GCO treatment, the incidence rate of gray mold amounted to 10%. No gray mold was observed in the P + C treatment group. These results indicate that gaseous $ClO_2$ treatment combined with precooling (P + C) was effective in maintaining the freshness of 'Maehyang' strawberry fruits intended for export from South Korea to Hong Kong.

Integration of Bological and Chemical Methods for the Control of Pepper Gray Mold Rot Under Commercial Greenhouse Conditions

  • Park, Seon-Hee;Bae, Dong-Won;Lee, Joon-Taek;Chung, Sung-Ok;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.15 no.3
    • /
    • pp.162-167
    • /
    • 1999
  • Integration of microbial antagonists with fungicides was tried to control the gray mold caused by Botrytis cinerea on pepper in greenhouse conditions and to reduce fungicide uses. All of the selected bacterial antagonists, Bacillus amyloliquefaciens BL3, Paenibacillus polymyxa BL4, and Pseudomonas putida Cha94, completely inhibited the conidial germination of B. cinerea until 30 days after treatment. However, bacterial colonization of pepper phylloplane was poor in BL4, while the other bacterial isolates and the fungal antagonist Trichoderma harzianum TM colonized well on the phylloplane, maintaining the population density of 104-105 cfu/g until 15 days after microbial treatments. Out of 13 kinds of selected fungicides used for gray mold diseases, polyoxin B and BKF 1995 showed the most discriminatory activity on the fungal growth between B. cinerea and TM. TM grew readily on the media containing those fungicides, while B. cinerea showed poor or no mycelial growth on them. The selected fungicides and antagonists alone reduced incidence of gray mold on pepper, showing disease indices of about 2.4 to 3.0, while its was increased up to 4.2 in the untreated control. Alternate treatments with the antagonists and 2-fold diluted fungicides inhibited the disease incidence as much as the antagonists or fungicides alone, and reduced the secondary inoculum more than the single treatments. This suggests that integration of antagonists and fungicides may be an efficient way to reduce fungicide sprays with reliable control efficacy of the disease. However, there was not much difference in the early and mid-term disease progress among the treatments and the untreated control, probably due to extremely favorable environmental conditions for the disease development in this experiment.

  • PDF

Study on the Control of Leaf Mold, Powdery Mildew and Gray Mold for Organic Tomato Cultivation (유기농 토마토 재배시 발생하는 잎곰팡이병, 흰가루병, 잿빛곰팡이병의 방제연구)

  • Hong, Sung-Jun;Park, Jong-Ho;Kim, Yong-Ki;Jee, Hyeong-Jin;Han, Eun-Jung;Shim, Chang-Ki;Kim, Min-Jeong;Kim, Jung-Hyun;Kim, Seung-Hyun
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.655-668
    • /
    • 2012
  • Foliar diseases are major constraints to profitable organic tomato production. Especially, powdery mildew, leaf mold and gray mold of tomato occur severely on organic cultured tomatoes in Korea. This study was conducted to develop organic tomato cultivation technology using environmental-friendly disease control methods (resistance cultivar planting, air circulation fan installation, oil-egg yolk mixtures, and microbial agents). When tomatoes were cultivated in plastic film house installed with air circulation fan, daily range of temperature was decreased by $2{\sim}7^{\circ}C$, average relative humidity was decreased by 1~5% compared to those in plastic house without air circulation fan. Consequently, incidence of tomato leaf mold and tomato gray mold was reduced by 55.0% and 24.4%, respectively. Control effect of microbial agents and oil-egg yolk mixtures against major tomato diseases was examined in plastic house. As a result, the control value of microbial agents against tomato gray mold and tomato leaf mold showed at the range of 49.0~55.9 %(gray mold) and 39.2~58.2%(leaf mold), respectively. The control value of oilegg yolk mixtures against tomato powdery mildew showed 97.6%. Fifteen tomato cultivars were evaluated for disease resistance against leaf mold and powdery mildew in organically cultivated tomato field. Among 15 tomato cultivars, seven cultivars including 'Super-top' were found to be high resistant to tomato leaf mold. Also 'Powerking', one of fifteen tomato cultivars, showed to be high resistant to tomato powdery mildew.

Development of a Biofungicide Using a Mycoparasitic Fungus Simplicillium lamellicola BCP and Its Control Efficacy against Gray Mold Diseases of Tomato and Ginseng

  • Shin, Teak Soo;Yu, Nan Hee;Lee, Jaeho;Choi, Gyung Ja;Kim, Jin-Cheol;Shin, Chul Soo
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.337-344
    • /
    • 2017
  • To develop a commercial product using the mycoparasitic fungus Simplicillium lamellicola BCP, the scale-up of conidia production from a 5-l jar to a 5,000-l pilot bioreactor, optimization of the freeze-drying of the fermentation broth, and preparation of a wettable powder-type formulation were performed. Then, its disease control efficacy was evaluated against gray mold diseases of tomato and ginseng plants in field conditions. The final conidial yields of S. lamellicola BCP were $3.3{\times}10^9conidia/ml$ for a 5-l jar, $3.5{\times}10^9conidia/ml$ for a 500-l pilot vessel, and $3.1{\times}10^9conidia/ml$ for a 5,000-l pilot bioreactor. The conidial yield in the 5,000-l pilot bioreactor was comparable to that in the 5-l jar and 500-l pilot vessel. On the other hand, the highest conidial viability of 86% was obtained by the freeze-drying method using an additive combination of lactose, trehalose, soybean meal, and glycerin. Using the freeze-dried sample, a wettable powder-type formulation (active ingredient 10%; BCP-WP10) was prepared. A conidial viability of more than 50% was maintained in BCP-WP10 until 22 weeks for storage at $40^{\circ}C$. BCP-WP10 effectively suppressed the development of gray mold disease on tomato with control efficacies of 64.7% and 82.6% at 500- and 250-fold dilutions, respectively. It also reduced the incidence of gray mold on ginseng by 65.6% and 81.3% at 500- and 250-fold dilutions, respectively. The results indicated that the new microbial fungicide BCP-WP10 can be used widely to control gray mold diseases of various crops including tomato and ginseng.

Control of Anthracnose and Gray Mold in Pepper Plants Using Culture Extract of White-Rot Fungus and Active Compound Schizostatin

  • Dutta, Swarnalee;Woo, E-Eum;Yu, Sang-Mi;Nagendran, Rajalingam;Yun, Bong-Sik;Lee, Yong Hoon
    • Mycobiology
    • /
    • v.47 no.1
    • /
    • pp.87-96
    • /
    • 2019
  • Fungi produce various secondary metabolites that have beneficial and harmful effects on other organisms. Those bioactive metabolites have been explored as potential medicinal and antimicrobial resources. However, the activities of the culture filtrate (CF) and metabolites of whiterot fungus (Schizophyllum commune) have been underexplored. In this study, we assayed the antimicrobial activities of CF obtained from white-rot fungus against various plant pathogens and evaluated its efficacy for controlling anthracnose and gray mold in pepper plants. The CF inhibited the mycelial growth of various fungal plant pathogens, but not of bacterial pathogens. Diluted concentrations of CF significantly suppressed the severity of anthracnose and gray mold in pepper fruits. Furthermore, the incidence of anthracnose in field conditions was reduced by treatment with a 12.5% dilution of CF. The active compound responsible for the antifungal and disease control activity was identified and verified as schizostatin. Our results indicate that the CF of white-rot fungus can be used as an eco-friendly natural product against fungal plant pathogens. Moreover, the compound, schizostatin could be used as a biochemical resource or precursor for development as a pesticide. To the best of our knowledge, this is the first report on the control of plant diseases using CF and active compound from white-rot fungus. We discussed the controversial antagonistic activity of schizostatin and believe that the CF of white-rot fungus or its active compound, schizostatin, could be used as a biochemical pesticide against fungal diseases such as anthracnose and gray mold in many vegetables.