Browse > Article
http://dx.doi.org/10.5423/PPJ.2011.27.3.257

Selection of KYC 3270, a Cellulolytic Myxobacteria of Sorangium cellulosum, against Several Phytopathogens and a Potential Biocontrol Agent against Gray Mold in Stored Fruit  

Kim, Sung-Taek (Department of Biomedical Sciences, Sun Moon University)
Yun, Sung-Chul (Department of Biomedical Sciences, Sun Moon University)
Publication Information
The Plant Pathology Journal / v.27, no.3, 2011 , pp. 257-265 More about this Journal
Abstract
During 2002-2008 in Korea, 455 extracts from myxobacteria consisting of 318 cellulolytic and 137 bacteriolytic myxobacteria were isolated, which were then screened for antifungal activity against the phytopathogens Botrytis cinerea, Colletotrichum acutatum, Penicillium sp., Pyricularia grisea, and Phytophthora capsici. 204 isolates had antifungal activity, causing both a clear zone due to blocked spore germination and inhibition of mycelial growth; most (199) were from cellulolytic (Sorangium cellulosum) and only five were from bacteriolytic myxobacteria. B. cinerea, the best controlled among the five tested pathogens, had a unique group of antifungal isolates of myxobacterial extracts compared to the other pathogens' groups. Among seventy-nine bioactive myxobacteria, four isolates, KYC 3130, KYC 3247, KYC 3248 and KYC 3270, were selected and all were cellulolytic. Liquid culture filtrates of these four myxobacteria were applied to tomato, cherry tomato, strawberry, and kiwi fruits 5 h before inoculation with gray mold conidia; then the treated fruits were placed in an airtight container and the experiment was repeated six to eight times. Incidence (%) of gray mold on fruit of the infected control treatment was 84-98%, whereas it was only 5-21% after the KYC 3270 treatment. After KYC 3270 treatment of the four fruits, mold control was 79-95%, which was highest among the filtrates and statistically the same as treatment with fludioxonil, a registered chemical against gray mold of stored fruits.
Keywords
antifungal activity; Botrytis cinerea; cellulolytic myxobacteria; strawberry;
Citations & Related Records
Times Cited By KSCI : 21  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Son, Y. J., Lee, J. P., Kim, C. S., Song, J. H., Kim, H. J., Kim, J. W., Kim, D. H., Park, H. C. and Moon, B. J. 2002. Biological control of gray mold rot of perilla caused by Botrytis cinerea I. resistance of perilla cultivars and selection of antagonistic bacteria. Plant Pathol. J. 18:36-42.   DOI   ScienceOn
2 Soung, M. G. and Sung, N. D. 2007. CoMFA and CoMSIA analysis on the selective fungicidal activity of N-phenyl-O-phenylthionocarbamate analogues against resistant and sensitive gray mold (Botrytis cinerea). Kor. J. Pest Sci. (in Korean) 11:138-143.   과학기술학회마을
3 Tian, S., Fan, Q., Xu, Y. and Liu, H. 2002. Biocontrol efficacy of antagonist yeasts to gray mold and blue mold on apples and pears in controlled atmospheres. Plant Dis. 86:848-853.   DOI   ScienceOn
4 Williamson, B., Tudzynski, B., Tudzynsk, P. and Van Kan, J. A. L. 2007. Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8:561-580.   DOI   ScienceOn
5 Xi, L. and Tian, S. P. 2005. Control of postharvest diseases of tomato fruit by combining antagonistic yeast with sodium bicarbonate. Sci. Agri. Sinica 38:950-955.
6 Lee, S. W., Kim, J. h., Min, J. Y., Bae, Y. S. and Kim, H. T. 2007. Monitoring for the resistance of Botrytis cinerea causing ginseng gray mold to procymidone and its multiple resistance with the mixture of carbendazim/diethofencarb. Res. Plant Dis. (in Korean) 13:170-176.   DOI   ScienceOn
7 Leibinger, W., Breuker, B., Hahn, M. and Mendgen, K. 1997. Control of postharvest pathogens and colonization of the apple surface by antagonistic microorganisms in the field. Phytopathology 87:1103-1110.   DOI   ScienceOn
8 Niggemann, J., Michaelis, K., Frank, R., Zander, N. and Höfle, G. 2002. Natural product-derived building blocks for combinatorial synthesis. Part 1. Fragmentation of natural products from myxobacteria. J. Chem. Soc., Perkin Trans. 1:2490-2503.
9 O'Neill, T. M., Niv, A., Elad, Y., and Shtienberg, D. 1996. Biological control of Botrytis cinerea on tomato stem wounds with Trichoderma harzianum. Eur. J. Plant Pathol. 102:635-643.   DOI
10 Park, S. M., Kim, H. S. and Yu, T. S. 2006. Antifungal activity of Bacillus sp. KMU-1011 against gray mold causing Botrytis cinerea. Kor. J. Microbiol. Biotechnol. (in Korean) 34:63-69.   과학기술학회마을
11 Park, S. Y., Lee, B. S., Kim, J. H., Lee, C. Y., Jang, E. H. and Cho, K. Y. 2004. Isolation and characterization of bacteriolytic wild myxobacteria. Kor. J. Microbiol. Biotechnol. (in Korean) 32: 218-223.   과학기술학회마을
12 Kim, B. S., Anh, J. W. and Cho, K. Y. 1998. Isolation and identification of myxobacteria KR025 and searching of their bioactive compounds. Kor. J. Plant Pathol. 14:345-349.   과학기술학회마을
13 Paulitz, T. C. and Bélanger, R. R. 2001. Biological control in greenhouse systems. Annu. Rev. Phytopathol. 39:103-133.   DOI   ScienceOn
14 Reichenbach, H. 2001. Myxobacteria, producers of novel bioactive substances. J. Ind. Microbiol. Biotechnol. 27:149-156.   DOI
15 Reichenbach, H. and Höfle, G. 1994. Discovery of a new antifungal mechanism of action: soraphen - an almost-success story. Scientific Annual Report, Gesellschaft fur Biotechnologische Forschung mbH. Braunschweig, pp. 5-22.
16 Kim, H. H. and Son, S. Y. 2001. Identification and characterization of myxobacteria from Korean soil. Kor. J. Microbiol. (in Korean) 37:239-244.   과학기술학회마을
17 Kim, J. H., Lee, S. H., Kim, C. S., Lim, E. K. Choi, K. H., Kong, H. G., Kim, D. W., Lee, S. W. and Moon, B. J. 2007. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. J. Microbiol. Biotechnol. 17:438-444.
18 Kim, S. K., Choi, B. H., Kim, J. G., Lee, B. K. and Kang, H. I. 2003a. Isolation of myxobacteria from soil and RFLP analysis of 16S rDNA fragments. Kor. J. Microbiol. (in Korean) 39:187-191.   과학기술학회마을
19 Kim, S. T. and Yun, S. C. 2011. Biocontrol with Myxococcus sp. KYC 1126 against anthracnose in hot pepper. Plant Pathol. J. 27:156-163.   DOI   ScienceOn
20 Kim, Y. S., Bae, W. C. and Baek, S. J. 2003b. Bioactive substances from myxobacteria. Kor. J. Microbiol. Biotechnol. (in Korean) 31:1-12.   과학기술학회마을
21 Choi, I. S., Chung, Y. R. and Cho, K. Y. 1995. Variations in phenotypic characteristics, pathogenicity and fungicides resistance of Botrytis cinerea, gray mold rot fungus, isolated from various plants. Kor. J. Mycol. (in Korean) 23:246-256.   과학기술학회마을
22 Krug, D., Zurek, G., Revermann, O., Vos, M., Velicer, G. J. and Müller, R. 2008. Discovering the hidden secondary metabolome of Myxococcus xanthus: a study of intraspecific diversity. Appl. Environ. Microbiol. 74:3058-3068.   DOI   ScienceOn
23 Kulakiotu, E. K., Thanassoulopoulos, C. C. and Sfakiotakis, E. M. 2004. Postharvest biological control of Botrytis cinerea on kiwifruit by volatiles of 'Isabella' grapes. Phytopathology 94:1280-1285.   DOI   ScienceOn
24 Lee, N. Y., Kwon, E. M., Kim, J. C. and Yu, S. H. 2004. Biological control of Botrytis leaf blight of lily and Botrytis gray mold of cucumber by Ulocladium atrum. Res. Plant Dis. (in Korean) 10:319-323.   과학기술학회마을   DOI   ScienceOn
25 Chung, J. W., Lee, C. Y., Yun, S. C. and Cho, K. Y. 2008. Screening of myxobacteria inhibiting the growth of Collectotrichum acutatum causing anthracnose on pepper. Kor. J. Microbiol. Biotechnol. (in Korean) 36:21-27.   과학기술학회마을
26 Dawid, W. 2000. Biology and global distribution of myxobacteria in soils. FEMS Microbiol. Rev. 24:403-427.   DOI
27 El-Ghaouth, A., Smilanick, J. L., Brown, G. E., Ippolito, A. and Wilson, C. L. 2001. Control of decay of apple and citrus fruits in semi-commercial tests with Candida saitona and 2-deoxy- D-glucose. Biol. Cont. 20:96-101.   DOI   ScienceOn
28 Gerth, K., Pradella, S., Perlova, O., Beyer, S. and Müller, R. 2003. Myxobacteria: proficient producers of novel natural products with various biological activities - past and future biotechnological aspects with the focus on the genus Sorangium. J. Biotechnol. 102:233-253.   DOI   ScienceOn
29 Hjeljord, L. G., Stensvand, A. and Tronsmo, A. 2001. Antagonism of nutrient-activated conidia of Trichoderma harzianum (atroviride) P1 against Botrytis cinerea. Phytopathology 91:1172-1180.   DOI   ScienceOn
30 Hang, N. T. T., Oh, S. O., Kim, G. H., Hur, J. S. and Koh, Y. J. 2005. Bacillus subtilis S1-0210 as a biocontrol agent against Botrytis cinerea in strawberries. Plant Pathol. J. 21:59-63.   DOI   ScienceOn
31 Hyun, H. S., Chung, J. W., Lee, H. B., Youn, J. K., Lee, C. Y. Kim, D. H. and Cho, K. Y. 2009. Isolation of cellulose-degrading myxobacteria Sorangium cellulosum. Kor. J. Microbiol. (in Korean) 45:48-53.   과학기술학회마을
32 Sharma, R. R., Singh, D. and Singh, R. 2009. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists. Biol. Cont. 50:205-221.   DOI   ScienceOn
33 Ahn, J. W. 2009. Spirodienal C, a new spiroketal produced by Sorangium cellulosum (Myxobacteria). Bull. Kor. Chem. Soc. 30:1218-1220.   DOI   ScienceOn
34 Ahn, J. W. and Kim, B. S. 2002. Isolation and in vivo activities of antifungal compounds from Myxococcus sp. JW154 (Myxobacteria). Kor. J. Microbiol. Biotechnol. 30:162-166.   과학기술학회마을
35 Boff, P., Köhl, J., Jansen, M., Horsten, P. J. F. M., Lombaers-van der Plas, C. and Gerlagh, M. 2002. Biological control of gray mold with Ulocladium atrum in annual strawberry crops. Plant Dis. 86:220-224.   DOI   ScienceOn
36 Bull, C. T., Shetty, K. G. and Subbarao, K. V. 2002. Interactions between myxobacteria, plant pathogenic fungi, and biocontrol agents. Plant Dis. 86:889-896.   DOI   ScienceOn
37 Cho, K. Y. 2001. Social behavior, fruiting body development, and bioactive metabolite production of myxobacteria. Kor. J. Bioindustry News. (in Korean) 14:11-16.
38 Choi, G. J., Kim, J. C., Jang, K. S., Nam, M. H., Lee, S. W. and Kim, H. T. 2009b. Biocontrol activity of Acremonium strictum BCP against Botrytis disease. Plant Pathol. J. 25:165-171.   DOI   ScienceOn
39 Choi, G. J., Kim, H. T., Kim, J. C. and Cho, K. Y. 1999. Antifungal activities of sulphamide and dicarboximide fungicides against Botrytis cinerea in several in vitro bioassays. Kor. J. Pest. Sci. (in Korean) 3:37-44.   과학기술학회마을
40 Choi, G. J., Jang, K. S., Choi, Y. H. and Kim, J. C. 2009a. Control efficacy of a new fungicide fludioxonil on lettuce gray mold according to several conditions. Res. Plant Dis. (in Korean) 15:217-221.   과학기술학회마을   DOI   ScienceOn