• Title/Summary/Keyword: in-water work

Search Result 2,746, Processing Time 0.032 seconds

Activity coefficients of Solvents and Ions in Electrolyte Solutions (전해질 용액에서 용매 및 이온의 활동도 계수)

  • Shim, Min-Young;Kim, Ki-Chang
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.185-194
    • /
    • 2000
  • In this work we measured the total pressure of the aqueous solutions and the methanol-water solutions dissolved with inorganic salts, at $25^{\circ}C$. In organic electrolytes used in this work were $K_2SO_4$ and $(NH_4)_2SO_4$. Using the measured vapour pressures the activity coefficient of solvents and the mean ionic activity coefficient were obtained through thermodynamic relations. The activity coefficients of solvent and the mean ionic activity coefficirnt obtained in this work were fitted with Macedo's model and Acard's model. Both two models were good agreeable to the vapor pressure and the mean ionic activity coefficient for the electroyte aqueous solutions. For electrolyte /methanol/water solutions, Macedo's model had much deviation from experimental data, while Acard's model showed a good agreement with experimental data.

  • PDF

Study on the Diurnal Change of Water Quality in the Pool Managed by the Nature-Friendly River Work (1) (자연복원하천구간에 있어서 못의 일중 수질변화에 관한 연구)

  • Kang, Sang Hyeok
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.4
    • /
    • pp.281-287
    • /
    • 2002
  • 자연친화적 하천사업에 있어서 못은 하천환경을 구성하는데 기본단위이나 수환경상의 기능에 대한 평가는 이루어지지 않고 있는 실정이다. 못의 수환경을 평가하기 위하여 측정 자료를 토대로 한 일중 수질모형을 개발하여 적용하였다. 못의 하천환경에 대하여 물리적, 생태학적 관점에서 그 효과를 분석하였다. 못에 있어서 일중 수질은 혼합의 정도에 따라 영향을 크게 받으며 이러한 모의실험 결과는 향후 못의 조성에 따른 자료수집이나 일차 생산력을 이해하는데 유효하게 이용될 수 있을 것이다.

Fundamental Characteristics of Mortar According to the Changes in the Solid Content Rate of the Water-Reducing Agent (감수제의 고형분율 변화에 따른 모르타르의 기초적 특성)

  • Kim, Min-Sang;Lee, Jae-Jin;Hyun, Seong-Yong;Kim, Tae-Woo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.156-157
    • /
    • 2017
  • It is possible in the case of the chemical admixtures for concrete currently being used in actual work sites to omit quality evaluation and replace it with the scores of the admixture manufactures; this can create a problem of decline in reliability in quality on the work site. Therefore this study sought to analyze the degree of influence changes in the solid content rate of lignin- and naphthalene-based water-reducing agents have on the fundamental characteristics of cement mortar. The results showed that in fresh mortar, the flow and amount of air decreases with decrease in the solid content ratio. In hardened mortar, the condensation strength had hardly any effect on the use of lignin-based water-reducing agent, but naphthalene-based water-reducing agent increased with the decrease in the solid content ratio.

  • PDF

Decomposition of Thickener in Grease by Water Contamination (수분오염에 따른 그리스 내 증주제 분해 연구)

  • Lim, Young-Kwan;Ham, Song-Yee;Lee, Joung-Min;Jeong, Choong-Sub
    • Tribology and Lubricants
    • /
    • v.28 no.1
    • /
    • pp.33-37
    • /
    • 2012
  • Automotive wheel bearing grease helps to reduce stresses and prevent wear of wheel bearings. But it is easily contaminated by water and other contaminants. Previously, our research group reported the change of grease physical properties such as dropping point, work penetration and oxidation work stability, water washout characteristics, leakage tendency, oil separation, evaporation loss and rust protection by water contamination. In this paper, we analyzed the physical characteristics of grease such as lubricity, viscosity and total acid number to investigate the mechanism of thickener decomposition. In water contaminated grease, the total acid number and wear scar were increased, the viscosity was decreased due to the decomposition of lithium complex thickener.

Enhancement effect of phosphate and silicate on water defluoridation by calcined gypsum

  • Al-Rawajfeh, Aiman Eid;Alrawashdeh, Albara I.;Aldawdeyah, Asma;Hassan, Shorouq;Qarqouda, Ruba
    • Advances in environmental research
    • /
    • v.2 no.1
    • /
    • pp.35-49
    • /
    • 2013
  • Research work on removal of fluoride from water, referred to as water defluoridation, has resulted into the development of a number of technologies over the years but they suffer from either cost or efficiency drawbacks. In this work, enhancement effects of phosphate and silicate on defluoridation of water by low-cost Plaster of Paris (calcined gypsum) were studied. To our knowledge, the influence of silicate on defluoridation was not reported. It was claimed, that the presence of some ions in the treated water samples, was decreasing the fluoride removal since these ions compete the fluoride ions on occupying the available adsorption sites, however, phosphate and silicate ions, from its sodium slats, have enhanced the fluoride % removal, hence, precipitation of calcium-fluoro compounds of these ions can be suggested. Percentage removal of $F^-$ by neat Plaster is 48%, the electrical conductance (EC) curve shows the typical curve of Plaster setting which begins at 20 min and finished at 30 min. The addition of phosphate and silicate ions enhances the removal of fluoride to high extent > 90%. Thermodynamics parameters showed spontaneous fluoride removal by neat Plaster and Plaster-silicate system. The percentage removal with time showed second-order reaction kinetics.

Wet-work Exposure: A Main Risk Factor for Occupational Hand Dermatitis

  • Behroozy, Ali;Keegel, Tessa G.
    • Safety and Health at Work
    • /
    • v.5 no.4
    • /
    • pp.175-180
    • /
    • 2014
  • Wet-work can be defined as activities where workers have to immerse their hands in liquids for >2 hours per shift, or wear waterproof (occlusive) gloves for a corresponding amount of time, or wash their hands >20 times per shift. This review considers the recent literature on wet-work exposure, and examines wet-work as a main risk factor for developing irritant contact dermatitis of the hands. The aim of this paper is to provide a detailed description of wet-work exposure among specific occupational groups who extensively deal with water and other liquids in their occupations. Furthermore, it highlights the extent and importance of the subsequent adverse health effects caused by exposure to wet-work.

ORGANIC POLLUTANTS DEGRADATION USING PULSELESS CORONA DISCHARGE: APPLICATION IN ULTRAPURE WATER PRODUCTION

  • Shin, Won-Tae;Sung, Nak-Chang
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.144-154
    • /
    • 2005
  • The use of ozone gained acceptance in the production of ultrapure water because of its powerful oxidizing ability. Ozone is currently used to deactivate microorganisms and remove organic contaminants. However, interest also exists in using radical species, which arc stronger oxidants than ozone, in such processes. One means of producing radical species is by corona discharge. This work investigates the use of a novel pulseless corona-discharge system for the removal of organic substances in ultrapure water production. The method combines corona discharge with electrohydrodynamic spraying of oxygen, forming microbubbles. Experimental results show that pulseless corona discharge effectively removes organics, such as phenol and methylene blue, in deionized water. The corona-discharge method is demonstrated to be comparable to the direct use of ozone at a high-applied voltage. The results also show that a minimum applied voltage exists for operation of the corona-discharge method. In this work, the minimum applied voltage is approximately 4.5 kV. The kinetic rate or phenol degradation in the reactor is modeled. Modeling results show that the dominant species of the pulseless corona-discharge reactor are hydroxyl radical and aqueous electron. Several radical species produced in the pulseless corona-discharge process are identified experimentally. The. major species are hydroxyl radical, atomic hydrogen species, and ozone.

An Experimental Study on the Fundamental Characteristics of Antiwashout Underwater Concrete with Variation of Water-cement Ratio (W/C 변화에 따른 수중불분리 콘크리트의 기초특성에 관한 실험적 연구)

  • 김명식;어영선;윤재범;이상명
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.21-29
    • /
    • 1999
  • In this study, an experiment was performed to analyze the influence of water-cement ratio on the fundamental characteristics of antiwashout underwater concrete using blended sand (sea sand:river sand = 1:1). The water-cement ratio (45%, 50%, 55%, 60%), andtiwashout underwater agent contents (0.82%, 1.00%, 1.14% of water contents per unit volume of concrete), and superplasticizer contents (1.5%, 2.0%, 2.5% of cement contents per unit volume of concrete) were chosen as the experimental parameters. The experimental results show that the underwater segregation resistance, unit weight of hardening concrete and compressive strength were increased as the water-cement ratio decreased and as the antiwashout underwater agent contents increased. On the other hand, the flowability(slump flow) was increased to the 55% of the increase of water-cement ratio, however, it was decreased at the ratio of 60%. From this study, the antiwashout underwater concrete can potentially be used as a materials underwater work of ocean if the water-cement ratio and chemical admixture contents for the suitable balance between cost and performance are properly selected.

A Study on Process Simulation Analysis of the Water Jet Cleaning Robot System for Micro Drill-bits (마이크로 드릴비트의 워터젯 세척 로봇시스템의 공정 시뮬레이션 분석에 관한 연구)

  • Kuk, Youn-Ho;Park, Sang-Rok;Park, Kee-Jin;Choi, Hyun-Jin
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.291-297
    • /
    • 2015
  • A water jet cleaning robot system for micro drill bits is to refurbish micro drill bits used for the PCB manufacturing process. It can refurbish drill bits with the minimum diameter of ${\phi}0.15{\sim}0.075mm$ of which the total quantity have been discarded before. Micro drill bits with the minimum diameter of ${\phi}0.075mm$ can be cleaned by applying the water jet cleaning robot system out of the manual ultrasonic cleaning in the past for the cleaning equipment as the initial process in refurbishing. This study analyzed problems, while applying the apparatus mechanism for the workability such as the robot traces of Transfer Robot I and II, drill bit loading and unloading, and cleaning tasks in the water jet cleaning robot system in an effort to carry out simulations. In addition, the cleaning work process was optimized as the work process was verified in advance and the production quantity was analyzed through simulations.

Properties of concrete incorporating granulated blast furnace slag as fine aggregate

  • Patra, Rakesh Kumar;Mukharjee, Bibhuti Bhusan
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.437-450
    • /
    • 2017
  • The present work investigates about the development of a novel construction material by utilizing Granulated Blast Furnace Slag (GBS), an industrial waste product, as substitution of natural fine aggregates. For this, experimental work has been carried out to determine the influence of GBS on the properties of concrete such as compressive strength (CS), modulus of elasticity, ultrasonic pulse velocity (UPV), chloride penetration, water absorption (WA) volume of voids (VV) and density. Concrete mixes of water/cement (w/c) ratios 0.45 and 0.5, and incorporating 20%, 40% and 60% of GBS as partial replacement of natural fine aggregate (sand) are designed for this study. The results of the experimental investigation depict that CS of concrete mixes increases with the increasing percentages of GBS. Moreover, the decrease in chloride penetration, WA and VV, and improvement in the modulus of elasticity, UPV, density of concrete is reported with the increasing percentage of GBS in concrete.