• Title/Summary/Keyword: in-vehicle communications

Search Result 394, Processing Time 0.024 seconds

Traffic Information Extraction and Application When Utilizing Vehicle GPS Information (차량의 GPS 정보를 활용한 도로정보 추출 및 적용 방법)

  • Lee, Jong-Sung;Jeon, Min-Ho;Cho, Kyoung-Woo;Oh, Chang-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2960-2965
    • /
    • 2013
  • Customized services for individuals in analysis of recently collected GPS information have been investigated in various aspects. As the size of collected GPS data gets larger, a variety of services is being released accordingly. Existing studies, however, are limited to presenting service models for users while there is little study on developing intelligent computing technologies in the introduction of GPS information into the system. This study suggests an algorithm to analyze traffic information by introducing GPS information into the system in order to take the lead among intelligent computing technologies. The suggested algorithm analyzes a map by means of the collected vehicle GPS information and sectional traffic information interpretation method; thus, the computer judges the traffic information collected by humans. The experiment result shows that the traffic information was properly analyzed upon the utilization of the given data. Although a small quantity of analyzed data was less reliable, the system maintained high reliability as the data was sufficient.

Robust Obstacle Detection and Avoidance Algorithm for Infrastructure-Based Vehicle Communication Under Signal Interference (중계기를 통한 다중 차량 간 통신 상황에서 신호 간섭에 강한 장애물 감지 및 회피 알고리즘)

  • Choi, Byung Chan;Kwon, Hyuk Chan;Son, Jin Hee;Nam, Haewoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.574-580
    • /
    • 2016
  • In this paper, we will introduce the system that can control multiple vehicles on the road through Single Board Computers and V2I (Vehicle-To-Infrastructure). Also, we will propose the group evasive maneuver decision algorithm, which plays a critical role in deciding whether the vehicles in the system have to conduct evasive maneuvers to avoid obstacles on the road. In order to test this system, we have utilized Wi-Fi and TCP/IP for establishing the communication between multiple vehicles and the relay server, and observed their driving states on the road with obstacles. During the experiments, we have discovered that our original decision algorithm possesses high failure rate when there is frequency interference in ISM (Industrial Scientific Medical) band. In order to reduce this failure rate, we have implemented the data transition detector. This paper will focus on how the use of data transition detector can affect the reliability of the system under the frequency interference of ISM band. If this technology is improved and applied in the field, we will effectively deal with such dangerous situations as multiple collision accidents through vehicle-to-vehicle communication or vehicle-to-infrastructure communication. Furthermore, this can be applied to the autonomous driving technologies. This can be used as the reference data for the development of the similar system.

Application of Deep Learning Method for Real-Time Traffic Analysis using UAV (UAV를 활용한 실시간 교통량 분석을 위한 딥러닝 기법의 적용)

  • Park, Honglyun;Byun, Sunghoon;Lee, Hansung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.353-361
    • /
    • 2020
  • Due to the rapid urbanization, various traffic problems such as traffic jams during commute and regular traffic jams are occurring. In order to solve these traffic problems, it is necessary to quickly and accurately estimate and analyze traffic volume. ITS (Intelligent Transportation System) is a system that performs optimal traffic management by utilizing the latest ICT (Information and Communications Technology) technologies, and research has been conducted to analyze fast and accurate traffic volume through various techniques. In this study, we proposed a deep learning-based vehicle detection method using UAV (Unmanned Aerial Vehicle) video for real-time traffic analysis with high accuracy. The UAV was used to photograph orthogonal videos necessary for training and verification at intersections where various vehicles pass and trained vehicles by classifying them into sedan, truck, and bus. The experiment on UAV dataset was carried out using YOLOv3 (You Only Look Once V3), a deep learning-based object detection technique, and the experiments achieved the overall object detection rate of 90.21%, precision of 95.10% and the recall of 85.79%.

Optimal Positioning of Small UAVs for Communication Relay (통신중계를 위한 다수 소형 무인항공기의 최적배치)

  • Jeong, Junho;Kim, Seungkeun;Oh, Hyondong;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.461-467
    • /
    • 2014
  • This paper investigates using small UAVs as communications relay nodes for expanding communications links and improving communications quality, primarily for a fleet of ground or navy vessels. An airborne relay in ground/maritime space can effectively connect to units operating over the horizon, beyond normal communication range, or under limited satellite communication environment. Even if the equipment development is mature for communications relay, where to locate UAVs for efficient relay is still a pending question. With this background, this paper will develop high-level deployment algorithms to optimize the location of UAVs for improving the connectivity of a wireless network among a fleet of ground or navy vessels.

Performance Analysis of Multicarrier DS-CDMA for Vehicular Sensor Communications and Networking (자동차 내부 센서간의 통신 및 네트워킹을 위한 다중 반송파 DS-CDMA의 성능 분석)

  • Park, Tae-Yoon;Choi, Jae-Ho
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.5
    • /
    • pp.761-770
    • /
    • 2004
  • The multicarrier direct sequence code-division (MC-DS/CDMA) is a well-known multiple access and data transmission scheme that is applicable for various mobile and wireless communications. Particularly for modern, smart vehicles equipped with multiple sensors, MC-DS/CDMA is one of the possible means for giving the sensors to get connected one another for sending and receiving messages and control information. For intra-vehicalur communicaiton and networking applications, we have proposed a novel MC-DS/CDMA multiple access and data transmission scheme incorporating a new idea of inserting sub-symbol based cyclic prefixes for compromising inter-symbol interference. In the performance investigation of our MC-DS/CDMA, we have looked into system performances related to bandwidth utiltzation, coding gain, and multiple number of sensors. Since the channel delay is comparatively shorter inside of vehicle than any other general mobile channels, the proposed scheme can be a successful candidate for networking wireless sensors simultaneously operting in an intelligent vehicle.

  • PDF

Implementation of Road Weather Information System Supporting Intelligent Transportation Systems Based on USN (센서 네트워크 기반의 지능형 교통 시스템 지원을 위한 RWIS 구현)

  • Park, Hyun-Moon;Park, Soo-Huyn;Park, Woo-Chool;Seo, Hae-Moon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3B
    • /
    • pp.485-492
    • /
    • 2010
  • Intelligent Transport System(ITS) has been studied in various systems, such as road environment information offering, vehicle short-range wireless/wire communication, vehicle collision preventing and pedestrian safety offering systems. Related to this, the USN technology based on the sensing accuracy for motorists and pedestrians safety, the information reliability, the maintenance and convenience for Sensor Network is highlighted. This study uses various sensors to construct USN to the road, and connect it to the developed RSU so it collects the real-time road environment information and offers it to OBU and Traffic Control Surveillance Center with Road Weather Information System. RSU collects roadside information for driver's safety and analyzes it to offer IP and beacon service according to the service priority to OBU & upper layer terminal. In the upper layer terminal it is developed the IP based Settop Box application program to offer the urban traffic information & road environment, and environment sensor error, etc. Finally, RWIS develops the real-time collection of roadside information to complement the driver's safety to the intelligent traffic system, and presents various service modes with technology convergence.

Hardware Architecture and Memory Bandwidth Analysis of AVM System (AVM 시스템의 하드웨어 구현에 따른 하드웨어 구조 및 메모리 대역폭 분석)

  • Nam, Kwnag-Min;Jung, Yong-Jin
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.241-250
    • /
    • 2016
  • AVM(Around View Monitoring) is a function of ADAS(Advanced Driver Assistance Systems), which provides a bird's eye view of the surroundings of a vehicle to the user. AVM systems require large bandwidth since they are composed of four input images and require real-time processing for vehicle-embedded environments. Also, the memory bandwidth requirement increases greatly when the resolution of the input data is higher. In this paper, we propose four basic hardware models of AVM systems. The models are decided by whether or not there is a valid data extraction module and an image processing purpose LUT generation module. We analyze the required bandwidth and hardware resource for each model. For verification of the proposed models, we implemented an AVM system using XC7Z045 FPGA and DDR3 memory for VGA and FHD resolution. All four of the proposed hardware model is executed below 33ms, which shows that it can operate in real-time.

The Full-Duplex Device-to-Device Security Communication Under the Coverage of Unmanned Aerial Vehicle

  • Zeng, Qian;Zhang, Zhongshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1941-1960
    • /
    • 2019
  • Unmanned aerial vehicles (UAVs), acting as mobile base stations (BSs), can be deployed in the typical fifth-generation mobile communications (5G) scenarios for the purpose of substantially enhancing the radio coverage. Meanwhile, UAV aided underlay device-to-device (D2D) communication mode can be activated for further improving the capacity of the 5G networks. However, this UAV aided D2D communication system is more vulnerable to eavesdropping attacks, resulting in security risks. In this paper, the D2D receivers work in full-duplex (FD) mode, which improves the security of the network by enabling these legitimate users to receive their useful information and transmit jamming signal to the eavesdropper simultaneously (with the same frequency band). The security communication under the UAV coverage is evaluated, showing that the system's (security) capacity can be substantially improved by taking advantage of the flexible radio coverage of UAVs. Furthermore, the closed-form expressions for the coverage probabilities are derived, showing that the cellular users (CUs)' secure coverage probability in downlink transmission is mainly impacted by the following three factors: its communication area, the relative position with UAV, and its eavesdroppers. In addition, it is observed that the D2D users or DUs' secure coverage probability is relevant to state of the UAV. The system's secure capacity can be substantially improved by adaptively changing the UAV's position as well as coverage.

FPGA-DSP Based Implementation of Lane and Vehicle Detection (FPGA와 DSP를 이용한 실시간 차선 및 차량인식 시스템 구현)

  • Kim, Il-Ho;Kim, Gyeong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.727-737
    • /
    • 2011
  • This paper presents an implementation scheme of real-time lane and vehicle detection system with FPGA and DSP. In this type of implementation, defining the functionality of each device in efficient manner is of crucial importance. The FPGA is in charge of extracting features from input image sequences in reduced form, and the features are provided to the DSP so that tracking lanes and vehicles are performed based on them. In addition, a way of seamless interconnection between those devices is presented. The experimental results show that the system is able to process at least 15 frames per second for video image sequences with size of $640{\times}480$.

Smart Mobile Blackbox DVR in Car Environment (자동차 환경에서 스마트 모바일 블랙박스 DVR)

  • Choi, Sun-O;Kim, Young-Po;Im, Yong-Soon;Kim, Young-Ja;Kang, Eun-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.9-15
    • /
    • 2013
  • In this paper, automatic recognition of an accident and whether service delivery and risk driving through the giving of the driver to correct driving habits before and after the accident to reproduce highly scalable video Smart Mobile Blackbox DVR (SMBD, Smart Mobile Blackbox DVR) Computer of the model was designed. SMBD on embedded systems equipped with wireless capabilities to sleep in the car accident point and the image information by wireless communications, by notification in the control center, 24-hour emergency rescue service and traffic information can be provided. The vehicle ECU (Electronic Control Unit) of the vehicle information and sensor data in conjunction with wireless eCall (Emergency Call) services can be realized.