• Title/Summary/Keyword: in-situ Calibration

Search Result 111, Processing Time 0.033 seconds

A Study of ${{\sigma}_v}'-D_r-N$ Correlation using Large Calibration Chamber System (대형 Calibration Chamber System을 이용한 ${{\sigma}_v}'-D_r-N$ 상관관계 연구)

  • Choi, Sung-Kun;Kim, Sang-In;Lee, Chung-Ho;Kim, Dong-Hoo;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1175-1182
    • /
    • 2005
  • Using KUCCS, which enables real-time monitoring and controlling, the various boundary condition and in-situ field stress condition was simulated, to derive the correlation among ${{\sigma}_v}'-Dr-N$in domestic sandy soils. Soil specimens, having various relative density and confined stress, were formulated to evaluate N-value from the SPT. and Pile Driving Analyzer, PDA, was employed as a measuring device for the energy transfer efficiency in the rod. From the quantitative analysis of N-value, the correlating equation, $N_{60}/{D_r}^2=16.35+14.45{{\sigma}_v}'$ was obtained on the basis of Skempton's method(1986). More reliable soil parameters can be obtained from the N-value by using this study which considered regional characters and the correlation among ${{\sigma}_v}'-Dr-N$.

  • PDF

Study on Gas Concentration Measurement of O2 and NO Using Calibration-free Wavelength Modulation Spectroscopy in Visible and Mid-Infrared Region (가시광선과 중적외선 영역의 무보정 파장 변조 분광법을 이용한 O2와 NO 가스 농도 측정에 관한 연구)

  • Aran Song;Geunhui Ju;Kanghyun Kim;Jungho Hwang;Daehae Kim;Changyeop Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.70-77
    • /
    • 2023
  • Air environment regulations have been strengthened due to increasing air pollutant emissions, the target of reducing emissions has increased and interest in gas measurement methods is also increasing. The sampling method is mainly used, but due to the spatial and temporal measurement limitations, the laser absorption spectroscopy which is a real-time and in-situ method is in the spotlight. In this study, we studied the wavelength modulation spectroscopy and described the calibration-free algorithm. The developed algorithm was modified to reflect 46 multi-absorption lines and was applied to light absorption signal analysis in visible and mid-infrared regions. In addition, the difference between the modulation parameters of laser was analyzed. As a result of reviewing the performance through O2 and NO gas measurement experiments of various concentration conditions, the linearity was R2O2=0.99999 and R2NO=0.99967.

Modified Traditional Calibration Method of CRNP for Improving Soil Moisture Estimation (산악지형에서의 CRNP를 이용한 토양 수분 측정 개선을 위한 새로운 중성자 강도 교정 방법 검증 및 평가)

  • Cho, Seongkeun;Nguyen, Hoang Hai;Jeong, Jaehwan;Oh, Seungcheol;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.665-679
    • /
    • 2019
  • Mesoscale soil moisture measurement from the promising Cosmic-Ray Neutron Probe (CRNP) is expected to bridge the gap between large scale microwave remote sensing and point-based in-situ soil moisture observations. Traditional calibration based on $N_0$ method is used to convert neutron intensity measured at the CRNP to field scale soil moisture. However, the static calibration parameter $N_0$ used in traditional technique is insufficient to quantify long term soil moisture variation and easily influenced by different time-variant factors, contributing to the high uncertainties in CRNP soil moisture product. Consequently, in this study, we proposed a modified traditional calibration method, so-called Dynamic-$N_0$ method, which take into account the temporal variation of $N_0$ to improve the CRNP based soil moisture estimation. In particular, a nonlinear regression method has been developed to directly estimate the time series of $N_0$ data from the corrected neutron intensity. The $N_0$ time series were then reapplied to generate the soil moisture. We evaluated the performance of Dynamic-$N_0$ method for soil moisture estimation compared with the traditional one by using a weighted in-situ soil moisture product. The results indicated that Dynamic-$N_0$ method outperformed the traditional calibration technique, where correlation coefficient increased from 0.70 to 0.72 and RMSE and bias reduced from 0.036 to 0.026 and -0.006 to $-0.001m^3m^{-3}$. Superior performance of the Dynamic-$N_0$ calibration method revealed that the temporal variability of $N_0$ was caused by hydrogen pools surrounding the CRNP. Although several uncertainty sources contributed to the variation of $N_0$ were not fully identified, this proposed calibration method gave a new insight to improve field scale soil moisture estimation from the CRNP.

Preliminary Results of Tissue-Equivalent Proportional Counter (TEPC) Dosimeter for Measuring In-Situ Aviation Radiation

  • Nam, Uk-won;Park, Won-kee;Hwang, Junga;Sohn, Jongdae;Moon, Bongkon;Kim, Sunghwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.249-255
    • /
    • 2020
  • We develop the tissue-equivalent proportional counter (TEPC) type's space radiation dosimeter to measure in-situ aviation radiation. That was originally developed as a payload of small satellite in the low-earth orbit. This dosimeter is based on a TEPC. It is made of an A-150 tissue-equivalent plastic shell of an internal diameter of 6 cm and a thickness of 0.3 cm. TEPC is filled with pure propane at 13.9 torrs to simulate a cell diameter of 2 ㎛. And the associated portable and low power electronics are also implemented. The verification experiments have been performed by the calibration experiments at ground level and compared with Liulin observation at aircraft altitude during the flight between Incheon airport (ICN) and John F. Kennedy airport (JFK). We found that the TEPC dosimeter can be used as a monitor for space radiation dosimeter at aviation altitude based on the verification with Liulin observation.

Derivation of Radiometric Calibration Coefficients for KOMPSAT-3A Mid-wave Infrared Data Using a Radiative Transfer Model: An Exploratory Example (복사전달모델을 이용한 KOMPSAT-3A 중적외선 데이터의 복사보정계수 산출: 탐구적 사례)

  • Kim, Yongseung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1629-1634
    • /
    • 2020
  • It is essential to convert the Digital Number (DN) measured from Earth observing satellites into the physical parameter of radiance when deriving the geophysical parameter such as surface temperature in the satellite data processing. The purpose of this study is to update the DN·Radiance equation established from lab measurements, using the KOMPSAT-3A mid-wave infrared data and the MODTRAN radiative transfer model. Results of this study show that the improved DN·Radiance equation allows us to produce the realistic values of radiance. We expect in the forthcoming study that the radiances calculated as such should be more quantitatively validated with the use of relevant in-situ measurements and a radiative transfer model.

A Nomogram Using Imaging Features to Predict Ipsilateral Breast Tumor Recurrence After Breast-Conserving Surgery for Ductal Carcinoma In Situ

  • Bo Hwa Choi;Soohee Kang;Nariya Cho;Soo-Yeon Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.10
    • /
    • pp.876-886
    • /
    • 2024
  • Objective: To develop a nomogram that integrates clinical-pathologic and imaging variables to predict ipsilateral breast tumor recurrence (IBTR) in women with ductal carcinoma in situ (DCIS) treated with breast-conserving surgery (BCS). Materials and Methods: This retrospective study included consecutive women with DCIS who underwent BCS at two hospitals. Patients who underwent BCS between 2003 and 2016 in one hospital and between 2005 and 2013 in another were classified into development and validation cohorts, respectively. Twelve clinical-pathologic variables (age, family history, initial presentation, nuclear grade, necrosis, margin width, number of excisions, DCIS size, estrogen receptor, progesterone receptor, radiation therapy, and endocrine therapy) and six mammography and ultrasound variables (breast density, detection modality, mammography and ultrasound patterns, morphology and distribution of calcifications) were analyzed. A nomogram for predicting 10-year IBTR probabilities was constructed using the variables associated with IBTR identified from the Cox proportional hazard regression analysis in the development cohort. The performance of the developed nomogram was evaluated in the external validation cohort using a calibration plot and 10-year area under the receiver operating characteristic curve (AUROC) and compared with the Memorial Sloan-Kettering Cancer Center (MSKCC) nomogram. Results: The development cohort included 702 women (median age [interquartile range], 50 [44-56] years), of whom 30 (4%) women experienced IBTR. The validation cohort included 182 women (48 [43-54] years), 18 (10%) of whom developed IBTR. A nomogram was constructed using three clinical-pathologic variables (age, margin, and use of adjuvant radiation therapy) and two mammographic variables (breast density and calcification morphology). The nomogram was appropriately calibrated and demonstrated a comparable 10-year AUROC to the MSKCC nomogram (0.73 vs. 0.66, P = 0.534) in the validation cohort. Conclusion: Our nomogram provided individualized risk estimates for women with DCIS treated with BCS, demonstrating a discriminative ability comparable to that of the MSKCC nomogram.

Study on Calibration Methods of Discharge Coefficient of Sonic Nozzles using Constant Volume Flow Meter

  • Jeong, Wan-Seop;Sin, Jin-Hyeon;Gang, Sang-Baek;Park, Gyeong-Am;Im, Jong-Yeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.17-17
    • /
    • 2010
  • This paper address technical issues in calibrating discharge coefficients of sonic nozzles used to measure the volume flow rate of low vacuum dry pumps. The first challenging issue comes from the technical limit that their calibration results available from the flow measurement standard laboratories do not fully cover the low vacuum measurement range although the use of sonic nozzles for precision measurement of gas flow has been well established in NMIs. The second is to make an ultra low flow sonic nozzlesufficient to measure the throughput range of 0.01 mbar-l/s. Those small-sized sonic nozzles do not only achieve the noble stability and repeatability of gas flow but also minimize effects of the fluctuation of down stream pressures for the measurement of the volume flow rate of vacuum pumps. These distinctive properties of sonic nozzles are exploited to measure the pumping speed of low vacuum dry pumps widely used in the vacuum-related academic and industrial sectors. Sonic nozzles have been standard devices for measurement of steady state gas flow, as recommended in ISO 9300. This paper introduces two small-sized sonic nozzles of diameter 0.03 mm and 0.2 mm precisely machined according to ISO 9300. The constant volume flow meter (CVFM) readily set up in the Vacuum center of KRISS was used to calibrate the discharge coefficients of the machined nozzles. The calibration results were shown to determine them within the 3% measurement uncertainty. Calibrated sonic nozzles were found to be applicable for precision measurement of steady state gas flow in the vacuum process. Both calibrated sonic nozzles are demonstrated to provide the precision measurement of the volume flow rate of the dry vacuum pump within one percent difference in reference to CVFM. Calibrated sonic nozzles are applied to a new 'in-situ and in-field' equipment designed to measure the volume flow rate of low vacuum dry pumps in the semiconductor and flat display processes.

  • PDF

New calibration apparatus for a precise barometer (초정밀 기압계 교정을 위한 새로운 압력계 교정장치 개발)

  • 우삼용;이용재;최인묵;김부식;최종운
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.3
    • /
    • pp.157-161
    • /
    • 2003
  • Nowadays there are increasing demands for more accurate measurement of atmospheric pressure according to the development of environmental industries. One of the most important pressure gauges for satisfying these demands is a quartz resonance barometer. In order to calibrate such an accurate barometer, laser/ultrasonic mercury manometers have been used. However, complexity and cost of mercury manometers made it out of use gradually. As a substitute, a gas-operated pressure balance is used for calibration of precise barometers. In such a case, commercially available pressure balances cannot be entirely suitable because consequent exposure of the piston, cylinder and masses to the atmosphere causes the problem of contamination. In this paper a device for changing the masses in situ without breaking the vacuum is described. This device made it possible to add or remove weights in the absolute mode, thereby greatly reducing the time between observations. At the same time, we investigated the characteristics of a commercial precise barometer using this new apparatus.

A Study on Domestic Applicability for the Korean Cosmic-Ray Soil Moisture Observing System (한국형 코즈믹 레이 토양수분 관측 시스템을 위한 국내 적용성 연구)

  • Jaehwan Jeong;Seongkeun Cho;Seulchan Lee;Kiyoung Kim;Yongjun Lee;Chung Dae Lee;Sinjae Lee;Minha Choi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.233-246
    • /
    • 2023
  • In terms of understanding the water cycle and efficient water resource management, the importance of soil moisture has been highlighted. However, in Korea, the lack of qualified in-situ soil moisture data results in very limited utility. Even if satellite-based data are applied, the absence of ground reference data makes objective evaluation and correction difficult. The cosmic-ray neutron probe (CRNP) can play a key role in producing data for satellite data calibration. The installation of CRNP is non-invasive, minimizing damage to the soil and vegetation environment, and has the advantage of having a spatial representative for the intermediate scale. These characteristics are advantageous to establish an observation network in Korea which has lots of mountainous areas with dense vegetation. Therefore, this study was conducted to evaluate the applicability of the CRNP soil moisture observatory in Korea as part of the establishment of a Korean cOsmic-ray Soil Moisture Observing System (KOSMOS). The CRNP observation station was installed with the Gunup-ri observation station, considering the ease of securing power and installation sites and the efficient use of other hydro-meteorological factors. In order to evaluate the CRNP soil moisture data, 12 additional in-situ soil moisture sensors were installed, and spatial representativeness was evaluated through a temporal stability analysis. The neutrons generated by CRNP were found to be about 1,087 counts per hour on average, which was lower than that of the Solmacheon observation station, indicating that the Hongcheon observation station has a more humid environment. Soil moisture was estimated through neutron correction and early-stage calibration of the observed neutron data. The CRNP soil moisture data showed a high correlation with r=0.82 and high accuracy with root mean square error=0.02 m3/m3 in validation with in-situ data, even in a short calibration period. It is expected that higher quality soil moisture data production with greater accuracy will be possible after recalibration with the accumulation of annual data reflecting seasonal patterns. These results, together with previous studies that verified the excellence of CRNP soil moisture data, suggest that high-quality soil moisture data can be produced when constructing KOSMOS.

Orthogonality Measurement of Square Plane Mirrors for Laser Interferometry (레이저 간섭계의 직각 평면거울에 대한 직각도 오차 측정)

  • 김태호;김승우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.169-179
    • /
    • 1998
  • Plane mirror type laser interferometers are popularly being used in many modern ultraprecision machines, as they can perform simultaneous measurements of multiple axis positions with nanometer resolution capabilities. One important issue in this application of laser interferometers is to provide a good level of alignment between the reflecting mirrors and the laser beams so that measurement errors due to undesirable coupling effects can be avoided in multiple axis measurements In this investigation, a thorough metrological analysis is given to develop an suitable mathematical model for a precision x-y stage in which the orthogonality misalignment between the reflecting mirrors significantly affects overall x-y mea-surement results. Then a noble calibration method is suggested in which two-dimensional displacement sensors of moire gratings of concentric circles are used to realize the reversal principle of orthogonality evaluation in situ. Finally, actual experimental results are discussed to verify that the suggested method can effectively calibrate the orthogonality error with an uncertainty of 0.2667 arcsec.

  • PDF