Browse > Article
http://dx.doi.org/10.7780/kjrs.2020.36.6.2.12

Derivation of Radiometric Calibration Coefficients for KOMPSAT-3A Mid-wave Infrared Data Using a Radiative Transfer Model: An Exploratory Example  

Kim, Yongseung (National Satellite Operation & Application Center, Korea Aerospace Research Institute)
Publication Information
Korean Journal of Remote Sensing / v.36, no.6_2, 2020 , pp. 1629-1634 More about this Journal
Abstract
It is essential to convert the Digital Number (DN) measured from Earth observing satellites into the physical parameter of radiance when deriving the geophysical parameter such as surface temperature in the satellite data processing. The purpose of this study is to update the DN·Radiance equation established from lab measurements, using the KOMPSAT-3A mid-wave infrared data and the MODTRAN radiative transfer model. Results of this study show that the improved DN·Radiance equation allows us to produce the realistic values of radiance. We expect in the forthcoming study that the radiances calculated as such should be more quantitatively validated with the use of relevant in-situ measurements and a radiative transfer model.
Keywords
Mid-wave infrared; Radiometric Calibration Coefficients; KOMPSAT-3A; Radiative Transfer Model;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Berk, A., G. P. Anderson, P. K. Acharya, and E. P. Shettle, 2008. MODTRAN® 5.2.0.0 USER'S MANUAL, Air Force Res. Lab., Space Veh. Directorate, Air Force Materiel Command, Hanscom AFB, MA, USA.
2 Dinguirard, M. and P. N. Slater, 1999. Calibration of space-multispectral imaging sensors: A review, Remote Sens. Environ., 68: 194-205.   DOI
3 Kim, Y., N. Malakar, G. Hulley, and S. Hook, 2019. Surface temperature retrieval from MASTER mid-wave infrared single channel data using radiative transfer model, Korean Journal of Remote Sensing, 35(1): 151-162.   DOI
4 Salisbury, J. W., A. Wald, and D. M. D'Aria, 1994. Thermal-infrared remote sensing and Kirchhoff's law 1. Laboratory measurements, J. Geophys. Res, 99: 11897-11911.   DOI
5 Schowengerdt, R. A., 1997. Remote sensing, models and methods for image processing 2nd Ed, Academic Press, San Diego, CA, USA.
6 Seemann, S. W., E. E. Borbas, R. O. Knuteson, G. R. Stephenson, and H.-L. Huang, 2008. Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements, J. Appl. Meteor. & Climat., 47: 108-123.   DOI
7 Wan, Z. and Z.-L. Li, 1997. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data, IEEE Transactions on Geoscience and Remote Sensing, 35(4): 980-996.   DOI
8 Slater, P. N, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, and B. Yuan, 1987. Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors, Remote Sens. Environ, 22: 11-37.   DOI
9 Tang, B.-H. and J. Wang, 2016. A physics-based method to retrieve land surface temperature from MODIS daytime midinfrared data, IEEE Transactions on Geoscience and Remote Sensing, 54(8): 4672-4679.   DOI
10 Thome, K. J., 1999. Validation plan for MODIS level 1 at-sensor radiance, https://eospso.nasa.gov/atbd/validation-plan-modis-level-1-sensor-radiance, Accessed on Apr. 22, 1999.