• 제목/요약/키워드: in-plane load function

검색결과 81건 처리시간 0.024초

유한두께를 가지는 보강된 균열평판에 대한 면외굽힘을 고려한 응력강도계수 계산 (Calculation of stress intensity factor considering out-of-plane bending for a patched crack with finite thickness)

  • 김종호;이순복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.165-169
    • /
    • 2000
  • A simple method was suggested to calculate the stress intensity factor for a one-sided patched crack with finite thickness. To consider out-of-plane bending effect resulting from the load-path eccentricity, the spring constant as a function of the through-thickness coordinate z was calculated from the stress distribution in the un-cracked plate, ${\sigma}_{yy}(y=0,\;z)$, and the displacement for the representative single strip Joint, $u_y(y=0,\;z)$. The stress Intensity factors were obtained using Rose's asymptotic solution approach and compared with the finite element results. In short crack region, two results had a little difference. However, two results were almost same in long crack region. On the other hand, the stress intensity factor using plane stress assumption was more similar to finite element result than plane strain condition.

  • PDF

Combined Optimal Design of Flexible Beam with Sliding Mode Control System

  • Park, Jung-Hyen;Kim, Soon-Ho
    • 한국해양공학회지
    • /
    • 제17권4호
    • /
    • pp.59-65
    • /
    • 2003
  • In order to achieve the desired lightweight and robust design of a structure, it is preferable to design a structure and its control system, simultaneously, which is termed the combined optimal design. A constant-cross-sectional area cantilever beam was chosen as the optimum design method, An initial load and a time-varying disturbance were applied at the free end of the beam. Sliding mode control was selected, due to its insensitivity to the disturbance, compared with other modes. It is known that the sliding mode control is robust to the disturbance and is uncertain, only if a matching condition is met, after giving a switching hyper plane. In this study, the optimum method was used for the design of the switching hyper plane, and the objective function of the optimum switching hyper plane was assumed to be the objective of the control system. The total weight of the structure was treated as a constraint, and the cross sectional areas of the beam were considered as design variables, the result being a nonlinear programming problem. To solve it, the sequential linear programming method was applied. As a result of the optimum design, the effect of attenuating vibrations has been substantially improved. Moreover, the lightweight design of the structure became possible as a result of the relationship of the weight of the structure to the control objective function.

Optimum design of plane steel frames with PR-connections using refined plastic hinge analysis and genetic algorithm

  • Yun, Young Mook;Kang, Moon Myung;Lee, Mal Suk
    • Structural Engineering and Mechanics
    • /
    • 제23권4호
    • /
    • pp.387-407
    • /
    • 2006
  • A Genetic Algorithm (hereinafter GA) based optimum design algorithm and program for plane steel frames with partially restrained connections is presented. The algorithm was incorporated with the refined plastic hinge analysis method, in which geometric nonlinearity was considered by using the stability functions of beam-column members and material nonlinearity was considered by using the gradual stiffness degradation model that included the effects of residual stress, moment redistribution by the occurrence of plastic hinges, partially restrained connections, and the geometric imperfection of members. In the genetic algorithm, a tournament selection method and micro-GAs were employed. The fitness function for the genetic algorithm was expressed as an unconstrained function composed of objective and penalty functions. The objective and penalty functions were expressed, respectively, as the weight of steel frames and the constraint functions which account for the requirements of load-carrying capacity, serviceability, ductility, and construction workability. To verify the appropriateness of the present method, the optimum design results of two plane steel frames with fully and partially restrained connections were compared.

고정지점을 갖는 낮은 포물선 아치의 면내 좌굴거동 (In-Plane Buckling Behavior of Fixed Shallow Parabolic Arches)

  • 문지호;윤기용;이학은
    • 대한토목학회논문집
    • /
    • 제28권1A호
    • /
    • pp.79-87
    • /
    • 2008
  • 본 논문은 고정지점을 갖는 낮은 아치의 면내 안정성에 관하여 연구를 수행하였다. 연구에 사용된 아치의 형상은 포물선 형태이며, 하중은 등분포 하중이다. 일반 아치의 비선형 지배 미분 방정식을 이용하여 고정지점을 갖는 낮은 아치의 증분 형태 하중-변위 관계와 좌굴 하중을 유도하였다. 연구 결과, 아치의 좌굴형상(대칭 혹은 비대칭 좌굴)은 아치의 라이즈비와 세장비의 함수로 이루어진 무차원 라이즈 H 와 밀접한 관계가 있는 것으로 나타났다. 이 밖에 본 연구에서는 고정지점을 갖는 낮은 아치의 좌굴 형상을 구분하는 경계와 좌굴하중을 제안하였다. 이러한 제안식은 일련의 유한요소해석 결과들과 비교하였으며, 본 연구의 제안식은 고정지점을 갖는 낮은 아치의 좌굴 하중을 적절히 예측할 수 있는 것으로 나타났다.

하중을 받고 회전하는 승용차 타이어의 고유진동수 측정에 관한 실험적 연구 (A Experimental study on natural frequency measurement of passenger car tire under the load and rotation)

  • 김병삼;홍동표;김동현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.601-606
    • /
    • 1993
  • The natural frequency measurement of passenger car tire under the load and rotation are studied. In order to obtain theoretical natural frequency and mode shape, the plane vibration of a tire is modeled to that of circular beam. By using the Tickling method based on Hamilton's principle, theoretical results are determined by considering tension force due to tire inflation pressure, rotational velocity and tangential, radial stiffness. Modal parameters varying the inflation pressure, load, rotational velocity are determined experimentally by using frequency response function method. The results show that experimental conditions are parameter for shifting of natural frequency.

  • PDF

Vibration of multilayered functionally graded deep beams under thermal load

  • Bashiri, Abdullateef H.;Akbas, Seref D.;Abdelrahman, Alaa A.;Assie, Amr;Eltaher, Mohamed A.;Mohamed, Elshahat F.
    • Geomechanics and Engineering
    • /
    • 제24권6호
    • /
    • pp.545-557
    • /
    • 2021
  • Since the functionally graded materials (FGMs) are used extensively as thermal barriers in many of applications. Therefore, the current article focuses on studying and presenting dynamic responses of multilayer functionally graded (FG) deep beams placed in a thermal environment that is not addressed elsewhere. The material properties of each layer are proposed to be temperature-dependent and vary continuously through the height direction based on the Power-Law function. The deep layered beam is exposed to harmonic sinusoidal load and temperature rising. In the modelling of the multilayered FG deep beam, the two-dimensional (2D) plane stress continuum model is used. Equations of motion of deep composite beam with the associated boundary conditions are presented. In the frame of finite element method (FEM), the 2D twelve-node plane element is exploited to discretize the space domain through the length-thickness plane of the beam. In the solution of the dynamic problem, Newmark average acceleration method is used to solve the time domain incrementally. The developed procedure is verified and compared, and an excellent agreement is observed. In numerical examples, effects of graduation parameter, geometrical dimension and stacking sequence of layers on the time response of deep multilayer FG beams are investigated with temperature effects.

슬라이딩모드 제어 기법을 이용한 구조-제어 시스템의 통합 최적 설계 (Combined Optimal Design of Structure-Control Systems by Sliding Mode Control)

  • 박중현
    • 한국정밀공학회지
    • /
    • 제19권10호
    • /
    • pp.45-51
    • /
    • 2002
  • To achieve the lightweight and robust design of a structure, it is requested to design a structure and its control system simultaneously, which is called as the combined optimal design. A constant-cross-sectional area cantilever beam was chosen as an example for the applying the optimum design method. An initial load and a time varying disturbance were applied at the free end of the beam. Sliding mode control was selected due to its insensitiveness to the disturbance compared with other modes. It is known that the sliding mode control is robust to the disturbance and the uncertainty only if a matching condition is met, after giving a switching hyper plane. In this study, the optimum method was used for the design of the switching hyper plane and the objective function of the optimum switching hyper plane was assumed to be the objective one of the control system. The total weight of the structure was treated as a constraint and the cross sectional areas of the beam were considered as design variables, which means a nonlinear programming problem. The sequential linear programming method was applied to solve it. As a result of the optimum design, the effect of attenuating vibrations has been improved obviously. Moreover, lightweight design of the structure became possible from the relationship of the weight of the structure and the control objective function.

일축(一軸) 압축(壓縮)을 받는 판(板)의 유한대판법(有限帶板法)에 의한 기하학적(幾何學的) 비선형(非線型) 해석(解析) (Geometrically Nonlinear Analysis of Plates Subjected to Uniaxial Compression by Finite Strip Method)

  • 이용재
    • 대한토목학회논문집
    • /
    • 제5권3호
    • /
    • pp.107-115
    • /
    • 1985
  • 초기(初期)처짐을 가지는 평판(平板)이 일보면내압축하중(一輔面內壓縮荷重)을 받을 때의 거동을 살피기 위하여 새로운 변위함수(變位凾數)를 도입(導入)한 유한대판법(有限帶板法)을 정식화(正式化)하고, 이 이론(理論)에 따라 컴퓨터 프로그램을 편성(編成)하여 여러 경우에 대한 평판(平板)의 거동을 계산(計算)하고 이미 발표된 결과(結果)와 비교해 보았는데 그 요점은 다음과 같다. 1. Curvature effect를 고려하여 면외변위(面外變位)함수로부터 유도한 식을 참고로 하여 새로운 면내변위(面內變位) 함수를 가정하고 이것을 대판요소(帶板要素)의 변위(變位)함수로 사용한 유한대판법(有限帶板法)을 안식화(定式化)하였다. 2. 위에서 안식화(定式化)한 유한대판법(有限帶板法)에 따라 편성(編成)한 프로그램을 써서 수치해석한 결과 변위증분방식(變位增分方式)이 하중증분방식(荷重增分方式)보다 수렴이 빨랐다. 3. 일축압축(一軸壓縮)을 받는 평판(平板)을 여려 경우에 대해 위의방법으로 해석한 결과는 해석적(解析的) 방법(方法)이나 Crisfield(D)에 의(依)한 유한요소법(有限要素法)으로 얻어진 결과와 잘일치 하였다. 따라서 위의 방법은 평판의 비선형해석을 위한 하나의 유용한 방법으로 생각된다.

  • PDF

Passive parasitic UWB antenna capable of switched beam-forming in the WLAN frequency band using an optimal reactance load algorithm

  • Lee, Jung-Nam;Lee, Yong-Ho;Lee, Kwang-Chun;Kim, Tae Joong
    • ETRI Journal
    • /
    • 제41권6호
    • /
    • pp.715-730
    • /
    • 2019
  • We propose a switched beam-forming antenna that satisfies not only ultra-wideband characteristics but also beam-forming in the WLAN frequency band using an ultra-wideband antenna and passive parasitic elements applying a broadband optimal reactance load algorithm. We design a power and phase estimation function and an error correction function by re-analyzing and normalizing all the components of the parasitic array using control system engineering. The proposed antenna is compared with an antenna with a pin diode and reactance load value, respectively. The pin diode is located between the passive parasitic elements and ground plane. An antenna beam can be formed in eight directions according to the pin diode ON (reflector)/OFF (director) state. The antenna with a reactance load value achieves a better VSWR and gain than the antenna with a pin diode. We confirm that a beam is formed in eight directions owing to the RF switch operation, and the measured peak gain is 7 dBi at 2.45 GHz and 10 dBi at 5.8 GHz.

Spectral SFEM analysis of structures with stochastic parameters under stochastic excitation

  • Galal, O.H.;El-Tahan, W.;El-Tawil, M.A.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • 제28권3호
    • /
    • pp.281-294
    • /
    • 2008
  • In this paper, linear elastic isotropic structures under the effects of both stochastic operators and stochastic excitations are studied. The analysis utilizes the spectral stochastic finite elements (SSFEM) with its two main expansions namely; Neumann and Homogeneous Chaos expansions. The random excitation and the random operator fields are assumed to be second order stochastic processes. The formulations are obtained for the system solution of the two dimensional problems of plane strain and plate bending structures under stochastic loading and relevant rigidity using the previously mentioned expansions. Two finite element programs were developed to incorporate such formulations. Two illustrative examples are introduced: the first is a reinforced concrete culvert with stochastic rigidity subjected to a stochastic load where the culvert is modeled as plane strain problem. The second example is a simply supported square reinforced concrete slab subjected to out of plane loading in which the slab flexural rigidity and the applied load are considered stochastic. In each of the two examples, the first two statistical moments of displacement are evaluated using both expansions. The probability density function of the structure response of each problem is obtained using Homogeneous Chaos expansion.