• Title/Summary/Keyword: in-plane load

Search Result 929, Processing Time 0.024 seconds

Influence of special plaster on the out-of-plane behavior of masonry walls

  • Donduren, Mahmut Sami;Kanit, Recep;Kalkan, Ilker;Gencel, Osman
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.769-788
    • /
    • 2016
  • The present study aimed at investigating the effect of a special plaster on the out-of-plane behavior of masonry walls. A reference specimen, plastered with conventional plaster, and a specimen plastered with a special plastered were tested under reversed cyclic lateral loading. The specimens were identical in dimensions and material properties. The special plaster contained an additive, which increased the adherence strength of the plaster to the wall. The amount of the additive in the mortar was adjusted based on the preliminary material tests. The influence of the plaster on the wall behavior was evaluated according to the initial cracking load, type of failure, energy absorption capacity (modulus of toughness), and crack pattern of the wall. Despite having limited contribution to the ductility, the special plaster increased the ultimate load capacity of the wall about 25%. The failure mode of the wall with special plaster resembled the plastic failure mechanism of a reinforced concrete slab in the formation of yielding lines along the wall. The deflection at failure and the modulus of toughness of the wall with special plaster were measured to be in order of 60% and 75% of the corresponding values of the reference wall.

Using FEM and artificial networks to predict on elastic buckling load of perforated rectangular plates under linearly varying in-plane normal load

  • Sonmez, Mustafa;Aydin Komur, M.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.159-174
    • /
    • 2010
  • Elastic buckling load of perforated steel plates is typically predicted using the finite element or conjugate load/displacement methods. In this paper an artificial neural network (ANN)-based formula is presented for the prediction of the elastic buckling load of rectangular plates having a circular cutout. By using this formula, the elastic buckling load of perforated plates can be calculated easily without setting up an ANN platform. In this study, the center of a circular cutout was chosen at different locations along the longitudinal x-axis of plates subjected to linearly varying loading. The results of the finite element method (FEM) produced by the commercial software package ANSYS are used to train and test the network. The accuracy of the proposed formula based on the trained ANN model is evaluated by comparing with the results of different researchers. The results show that the presented ANN-based formula is practical in predicting the elastic buckling load of perforated plates without the need of an ANN platform.

Effects of the kinesiologic factors gait on symmetric load (양측성 부하가 보행의 운동학적 요인에 미치는 영향)

  • Ha, Mi-Sook;Nam, Kun-Woo
    • Journal of Korean Physical Therapy Science
    • /
    • v.20 no.1
    • /
    • pp.69-75
    • /
    • 2013
  • Background : The purpose of this study was to investigate the effects of the kinesiologic factors of gait on symmetric load. Methods : The subjects were consisted normal 33 persons (10 males and 23 females). The kinds of weight of the bag was 0kg, 5kg and 7kg. The kinesiologic factors of gait measured by three dimensional motion analysis system and callibration marker. Callibration was ASIS, hip greater trochanter, knee lateral epicondyle on sagittal plane, ankle lateral malleolus on sagittal plane, toe 5th phalange. The changes kinesiologic factor were analyzed using one way ANOVA with SPSS 21.0 package program. Results : The weight of the bag was statistical significance on change of hip joint and knee joint(p<.05). The weight of the bag was no significance on change of ankle joint(p>.05). The right and left of the lower limbs was no significant(p>.05). Conclusion : This research provides weight of bag for the gait. This study showed that symmetric load does affect kinesiologic factors of gait. This indicates that there is an interaction that plays a crucial roles in the weight of bag and kinesiologic factors of gait.

  • PDF

Calculation of stress intensity factor considering out-of-plane bending for a patched crack with finite thickness (유한두께를 가지는 보강된 균열평판에 대한 면외굽힘을 고려한 응력강도계수 계산)

  • Kim, Jong-Ho;Lee, Soon-Bok
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.165-169
    • /
    • 2000
  • A simple method was suggested to calculate the stress intensity factor for a one-sided patched crack with finite thickness. To consider out-of-plane bending effect resulting from the load-path eccentricity, the spring constant as a function of the through-thickness coordinate z was calculated from the stress distribution in the un-cracked plate, ${\sigma}_{yy}(y=0,\;z)$, and the displacement for the representative single strip Joint, $u_y(y=0,\;z)$. The stress Intensity factors were obtained using Rose's asymptotic solution approach and compared with the finite element results. In short crack region, two results had a little difference. However, two results were almost same in long crack region. On the other hand, the stress intensity factor using plane stress assumption was more similar to finite element result than plane strain condition.

  • PDF

A study on improving efficiency in computational procedure of finite element nonlinear analysis of plane frame structures (평면 프레임 구조물의 유한요소 비선형 해석을 위한 효율적인 수치해석 방법에 관한 연구)

  • 구정서;이병채;곽병만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.631-641
    • /
    • 1988
  • Computational procedures associated with finite element nonlinear analysis of plane frame structures were examined and new solution schemes were suggested. Element stiffness matrix was derived from the principle of virtual displacements. Geometric and material nonlinearities were considered in the formulation. Solution method was based upon the constant displacement length method in conjunction with the Newton-Raphson method. New solution schemes were introduced in determining the initial load increment and the sign of load increments and predicting the length of displacement increment to improve user convenience, efficiency and stability. Numerical experiments were performed for several typical problems and suggested schemes were found efficient and convenient for analyzing nonlinear frame structures.

Buckling and vibration analysis of stiffened plate subjected to in-plane concentrated load

  • Srivastava, A.K.L.;Datta, P.K.;Sheikh, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.685-704
    • /
    • 2003
  • The buckling and vibration characteristics of stiffened plates subjected to in-plane concentrated edge loading are studied using finite element method. The problem involves the effects of non-uniform stress distribution over the plate. Buckling loads and vibration frequencies are determined for different plate aspect ratios, boundary edge conditions and load positions. The non-uniform stresses may also be caused due to the supports on the edges. The analysis presented determines the initial stresses all over the region considering the pre-buckling stress state for different kinds of loading and edge conditions. In the structural modeling, the plate and the stiffeners are treated as separate elements where the compatibility between these two types of elements is maintained. The vibration characteristics are discussed and the results are compared with those available in the literature and some interesting new results are obtained.

Numerical study on RC flat plates subjected to combined axial and transverse load

  • Park, Honggun
    • Structural Engineering and Mechanics
    • /
    • v.8 no.2
    • /
    • pp.137-150
    • /
    • 1999
  • This paper presents a numerical study on the flat plates in deep basements, subjected to floor load and in-plane compressive load due to soil and hydraulic lateral pressure. For nonlinear finite element analysis, a computer program addressing material and geometric nonlinearities is developed. The validity of the numerical model is established by comparison with existing experiments performed on plates simply supported on four edges. The flat plates to be studied are designed according to the Direct Design Method in ACI 318-95. Through numerical study on the effects of different load combinations and loading sequence, the load condition that governs the strength of the flat plates is determined. For plates under the governing load condition, parametric studies are performed to investigate the strength variations with reinforcement ratio, aspect ratio, concrete strength, and slenderness ratio. Based on the numerical results, the floor load magnification factor is proposed.

Spectral SFEM analysis of structures with stochastic parameters under stochastic excitation

  • Galal, O.H.;El-Tahan, W.;El-Tawil, M.A.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.281-294
    • /
    • 2008
  • In this paper, linear elastic isotropic structures under the effects of both stochastic operators and stochastic excitations are studied. The analysis utilizes the spectral stochastic finite elements (SSFEM) with its two main expansions namely; Neumann and Homogeneous Chaos expansions. The random excitation and the random operator fields are assumed to be second order stochastic processes. The formulations are obtained for the system solution of the two dimensional problems of plane strain and plate bending structures under stochastic loading and relevant rigidity using the previously mentioned expansions. Two finite element programs were developed to incorporate such formulations. Two illustrative examples are introduced: the first is a reinforced concrete culvert with stochastic rigidity subjected to a stochastic load where the culvert is modeled as plane strain problem. The second example is a simply supported square reinforced concrete slab subjected to out of plane loading in which the slab flexural rigidity and the applied load are considered stochastic. In each of the two examples, the first two statistical moments of displacement are evaluated using both expansions. The probability density function of the structure response of each problem is obtained using Homogeneous Chaos expansion.

비정상 와류격자 기법을 이용한 해상용 부유식 풍력발전기의 공력하중특성

  • Jeon, Minu;Kim, Hogeon;Lee, Seungmin;Lee, Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.62.1-62.1
    • /
    • 2011
  • The wind can be stronger and steadier further from shore, but water depth is also deeper. Then bottom-mounted towers are not feasible, and floating turbines are more competitive. There are additional motions in an offshore floating wind turbine, which results in a more complex aerodynamics operating environment for the turbine rotor. Many aerodynamic analysis methods rely on blade element momentum theory to investigate aerodynamic load, which are not valid in vortex ring state that occurs in floating wind turbine operations. So, vortex lattice method, which is more physical, was used in this analysis. Floating platform's prescribed positions were calculated in the time domain by using floating system RAO and waves that are simulated using JONSWAP spectrum. The average value of in-plane aerodynamic force increase, but the value of out-of-plane force decrease. The maximum variation aerodynamic force abruptly increases in severe sea state. Especially, as the pitch motion of the barge platform is large, this motion should be avoided to decrease the aerodynamic load variation.

  • PDF

Elastic Buckling of Elastically Restrained Orthotropic Plate with a Longitudinal Stiffener under In-plane Linearly Distributed Load (면내 선형분포하중을 받으며 두 변이 탄성구속되고 수평보강된 직교이방성판의 탄성좌굴)

  • 권성미;정재호;채수하;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.17-20
    • /
    • 2001
  • This paper presents the results of an elastic buckling analysis of elastically restrained orthotropic plate with a longitudinal stiffener under in-plane linearly distributed load. It is assumed that the loaded edges of web plate are simply supported and other two edges are elastically restrained against rotation. The stiffener is modeled as a beam element and its torsional rigidity is neglected. For the buckling analysis Lagrangian multiplier method is employed. The effects of restraint and longitudinal stiffener are presented in a graphical form.

  • PDF