• 제목/요약/키워드: in-plane compression

검색결과 328건 처리시간 0.027초

Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity

  • Bobinski, J.;Tejchman, J.
    • Computers and Concrete
    • /
    • 제1권4호
    • /
    • pp.433-455
    • /
    • 2004
  • The paper presents results of FE-calculations on shear localizations in quasi-brittle materials during both an uniaxial plane strain compression and uniaxial plane strain extension. An elasto-plastic model with a linear Drucker-Prager type criterion using isotropic hardening and softening and non-associated flow rule was used. A non-local extension was applied in a softening regime to capture realistically shear localization and to obtain a well-posed boundary value problem. A characteristic length was incorporated via a weighting function. Attention was focused on the effect of mesh size, mesh alignment, non-local parameter and imperfections on the thickness and inclination of shear localization. Different methods to calculate plastic strain rates were carefully discussed.

다짐 화강풍화토의 비등방성 거동특성 (Anisotropic Behavior of Compacted Decomposed Granite Soils)

  • 함태규;효도마사유키;안태봉
    • 한국지반공학회논문집
    • /
    • 제21권7호
    • /
    • pp.5-12
    • /
    • 2005
  • 화강풍화토의 강도와 변형특성을 조사하기 위하여 불포화배수 삼축압축실험을 실시하였다. 본 실험을 위하여 야마구치현의 시모노세키에서 화강풍화토를 구하였으며 주응력방향과 다짐방향을 0,45, 90도의 세가지 방향성을 갖도록 하였다. 등방압축시 발생하는 압축변형률은 다짐각도에 따라 크게 영항을 받는다. 이차압축시의 변형거동에 관한 시간의존성은 다짐각도와 관계가 없다. 다짐각도가 압축강도와 변형에 미치는 영향은 특히 낮은 구속압력시에 크다. 다짐각도가 다르다 하더라도 다일러틴시 비율은 다일러턴시로 인한 강도증가와 상관하여 변화한다. 따라서 다짐풍화토는 초기 비등방성 조직을 갖고 있는 모래와 같이 비등방성 역학적 성질을 갖는다고 할 수 있다.

열유동을 고려한 SMC 압축성형공정의 3차원 유한요소 해석 (Coupled Thermo-Viscoplastic Three Dimensional Finite Element Anaysis of Compression Molding of Sheet Molding Compound)

  • 김수영;임용택
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.488-499
    • /
    • 1996
  • SMC(Sheet molding compound) is a thermosetting material reinforced with chopped fiberglass. The compression molding of SMC was analyzed based on a rigid thermo-viscoplastic approach using a three dimensional finite element program coupled with temperatures. Only the temperature analysis part was tested in this paper by solving one-dimensional heat transfer problem and comparing with the exact solutions available in the literature. Based on this comparison the program was proved to be valid and was further applied in solving compression molding of SMC between flat dies. To investigate the usefulness of a rigid thermo-viscoplastic approach in the compression molding analysis of SMC charge, compression of rectangular shaped SMC charge at plane strain and three dimensionalde formation condition was analyzed under the same condition as given in the literature. From this comparison it was found out that the rigid thermo-viscoplastic approach was useful in analyzing SMC compression molding between flat dies.

종방향 면내 압축하중 하의 세장한 선박 이중판 하이브리드 설계시스템 구축 (Development of Slender Doubler Plate Hybrid Design System for Ship Structure Subjected to Longitudinal In-plane Compression)

  • 함주혁
    • 한국해양공학회지
    • /
    • 제28권1호
    • /
    • pp.20-27
    • /
    • 2014
  • In view of the importance of material reduction and rational structural design due to the rapid increase in oil and steel prices, an optimized structural hybrid design system for the doubler plate of a ship's hull structure was developed. A direct design process by a structural designer was added to this developed optimized system to increase the design efficiency and provide a way of directly inserting a designer's decisions into the design system process. As the first step of the doubler design system development, the design formulas used in doubler design system were introduced. Based on the introduction of influence coefficients $K_{t_c}$ $K_{t_d}$, $K_{b_d}$ and $K_{a_d}$ according to the variations in the doubler length, breadth, doubler thickness, and average corrosion thickness of the main plate, the design formulas for an equivalent plate thickness were developed, and a hybrid design system using these formulas was suggested for the slender doubler plate of a ship structure subjected to a longitudinal in-plane compression load. By using this developed design system, a more rational doubler plate design can be expected considering the efficient reinforcement of the plate members of ship structures. Additionally, a more detailed structural analysis through local strength evaluations will be performed to verify the efficiency of the optimum structural design for the doubler plate.

완전 풍화된 화강풍화토의 불포화 응력-변형률 거동 특성 (The Unsaturated Stress Strain Behavior of CDG (Completely Decomposed Granite) Soils)

  • 함태규;안태봉
    • 한국지반공학회논문집
    • /
    • 제26권6호
    • /
    • pp.21-28
    • /
    • 2010
  • 화강풍화토는 가장 일반적인 흙의 종류이다. 비등방성 화강풍화토의 응력-변형-강도를 측정하는 것은 사면, 옹벽, 굴착의 변형과 안정을 위하여 매우 중요하다. 불포화 강도특성을 알기 위하여 일련의 불포화 배수삼축압축시험을 시행하였다. 시험시료는 다짐방향에 각각 0, 45, 90도의 축방향각을 갖도록 하였다. 등방압축을 받는 시료의 축변형률은 다짐방향에 의하여 크게 영향을 받으며 이차압축과정에는 시간의존성은 다짐방향과 관계가 거의 없다. 삼축압축강도와 변형에 미치는 다짐방향의 영향은 저구속압과 포화토에서 더 확연한것으로 나타났다. 다짐방향과의 각도를 고려하는 불포화화강풍화토의 강도를 추정하는 방법을 제안하였다.

비트 플레인을 이용한 움직임 추정기 설계의 관한 연구 (A Study on Motion Estimator Design Using Bit Plane)

  • 김병철;조원경
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.403-406
    • /
    • 1999
  • Among the compression methods of moving picture information, a motion estimation method is used to remove time-repeating. The Block Matching Algorithm in motion estimation methods is the commonest one. In recent days, it is required the more advanced high quality in many image processing fields, for example HDTV, etc. Therefore, we have to accomplish not by means of Partial Search Algorithm, but by means of Full Search Algorithm in Block Matching Algorithm. In this paper, it is suggested a structure that reduce total calculation quantity and size, because the structure using Bit Plane select and use only 3bit of 8bit luminance signal.

  • PDF

철근콘크리트 판넬의 인장강화효과 (Tension Stiffening Effect in Reinforced Concrete Panels)

  • 곽효경;김도연
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.141-148
    • /
    • 1998
  • An analytical model which can simulate the post-cracking behavior of reinforced concrete structures subjected to in-plane shear and normal stresses is presented. Based on the force equilibriums, compatibility conditions, and bond stress-slip relationship between steel and concrete, a criterion to simulate consider the tension-stiffening effect is proposed. The material behavior of concrete is described by an orthotropic constitutive model, and focused on the tension-compression region with tension-stiffening and compression softening effects defining equivalent uniaxial relations in the axes of orthotropy. Correlation studies between analytical results and available experimental data are conducted with the objective to establish the validity of the proposed model.

  • PDF

섬유강화 플라스틱 복합판의 압축성형에 있어서 경사하중의 영향 (AL망의 적층소재의 유동에 의하여) (The Effect of Compression Molding with Inclined Force for Fiber - Reinforced Thermoplastics)

  • 김만수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권3호
    • /
    • pp.63-67
    • /
    • 1994
  • A main property for fiber reinforced thermoplastic composite material in compression molding is the flow of fibers. This flow is so effective a long direction of acting force that this study examined for the inclined angel of 30$^{\circ}$, 45$^{\circ}$ and 6$^{\circ}$. Below the near softing temperature of plastic, the fiber has been fractured at a point so that the fiber strength is smaller then the local hydrostatic stress in the mold. It has been found that the position of fracture is changing accrding to the incling angle. In case of the above softing temperature, the larger the inclined is, the farther the flow of fiber move. Also the plastic flow has been progresed with the cicular are type.

  • PDF

Analysis and prediction of ultimate strength of high-strength SFRC plates under in-plane and transverse loads

  • Perumal, Ramadoss;Palanivel, S.
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1273-1287
    • /
    • 2014
  • Plates are most widely used in the hulls of floating concrete structures, bridge decks, walls of off-shore structures and liquid storage tanks. A method of analysis is presented for the determination of load-deflection response and ultimate strength of high-strength steel fiber reinforced concrete (HSSFRC) plates simply supported on all four edges and subjected to combined action of external compressive in-plane and transverse loads. The behavior of HSSFRC plate specimens subjected to combined uniaxial in-plane and transverse loads was investigated. The proposed analytical method is compared to the physical test results, and shows good agreement. To predict the constitutive behavior of HSSFRC in compression, a non-dimensional characteristic equation was proposed and found to give reasonable accuracy.