• 제목/요약/키워드: in-plane bending

검색결과 488건 처리시간 0.022초

굽힘효과를 고려한 박막 유한요소에 의한 단면 성형해석 (Sectional forming analysis by membrane finite elements considering bending effects)

  • 김준보;이광병;금영탁
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.493-503
    • /
    • 1998
  • The sectional forming analysis considering bending effects from the geometrically deformed shape of two linear membrane finite elements(called super element) was performed under plane strain assumption for analyzing forming processes of an arbitrarily shaped draw-die. For the evaluation of bending effects, the bending equivalent forces are calculated from the bending moment computed using the changes in the interior angle at the middle node of super element, and are agumented to the membrane stretch forces. In order to verify the validity of the bending formulation, the simulation results for the stretch, draw, and bend sections were compared with membrane analysis results and measurements.

SWATH선의 최종 횡굽힘강도 해석 (Ultimate Transverse Bending Strength Analysis of a SWATH Ship)

  • 박치모
    • 한국해양공학회지
    • /
    • 제6권2호
    • /
    • pp.103-112
    • /
    • 1992
  • The calculation method which takes into account the shear lag effects on the ultimate transverse bending moment of a SWATH(Small Waterplane Area Twin Hull) ship has been developed. In case of the ultimate bending strength analysis of conventional monohull ships and general box girder structures, the hypothesis that plane section remains plane after bending can be employed but not in the case of the structures having wide flange. For the ultimate bending strength analysis of such structures, a new method which can take into account the effect of shear lag on the ultimate bending strength has been developed by adopting more reasonable assumption that warping distortion of the section takes place inthe same way as the actual stress distribution. Finally, the proposed method has been applied to a a SWATH cross deck structure.

  • PDF

Fatigue analysis on the mooring chain of a spread moored FPSO considering the OPB and IPB

  • Kim, Yooil;Kim, Min-Suk;Park, Myong-Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.178-201
    • /
    • 2019
  • The appropriate design of a mooring system to maintain the position of an offshore structure in deep sea under various environmental loads is important. Fatigue design of the mooring line considering OPB/IPB(out-of-plane bending/in-plane bending) became an essential factor after the incident of premature fatigue failure of the mooring chain due to OPB/IPB in the Girassol region in West Africa. In this study, mooring line fatigue analysis was performed considering the OPB/IPB of a spread moored FPSO in deep sea. The tension of the mooring line was derived by hydrodynamic analysis using the de-coupled analysis method. The floater motion time histories were calculated under the assumption that the mooring line behaves in quasi-static manner. Additional time domain analysis was carried out by prescribing the obtained motions on top of the selected critical mooring line, which was determined based on spectral fatigue analysis. In addition, nonlinear finite element analysis was performed considering the material nonlinearities, and both the interlink stiffness and stress concentration factors were derived. The fatigue damage to the chain surface was estimated by combining both the hydrodynamic and stress analysis results.

In-plane 모드 반복굽힘 조건에서 90° 엘보우의 손상 위치와 방향에 미치는 직경과 두께 영향 (Effect of Diameter and Thickness on the Failure Location and Orientation of 90° Elbows Under In-plane Mode Cyclic Bending)

  • 홍진의;김진원
    • 한국압력기기공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.77-86
    • /
    • 2022
  • This study investigates the effect of the diameter and thickness on crack initiation location and orientation of 90° elbows under in-plane mode displacement-controlled cyclic bending loads. Finite element (FE) analysis of cyclic failure test is conducted for elbow specimens under in-plane mode displacement-controlled cyclic bending to identify the parameters affecting crack location and orientation. Furthermore, parametric FE analysis of the pipe elbows with various pipe nominal sizes and Schedules is performed, and the crack location and orientation from the results of FE analysis are determined. It is found that the crack location and orientation in the pipe elbows are determined mianly by the radius to thickness ratio of pipe elbows (Rm/t). It is also found that the presence of internal pressure slightly increases the value of Rm/t at which the failure mode changes.

고정지점 포물선 아치의 면내 좌굴강도 (In-plane buckling strength of fixed parabolic arch)

  • 문지호;윤기용;조영래;이학은
    • 한국강구조학회 논문집
    • /
    • 제18권3호
    • /
    • pp.301-310
    • /
    • 2006
  • 면외로 적절히 구속되어 있는 아치의 극한강도는 소성 휨모멘트와 면내 연구는 압축력을 받는 고정지점 포물선 아치의 면내 좌굴 거동과 강도에 관한 연구를 수행하고, 압축력과 휨모멘트를 받는 고정지점 포물선 아치로 연구를 확장하였다. 본 연구 결과 한계 세장비를 제안하여 아치의 좌굴 모드를 구분하는 방법을 제안하였으며, 직선기둥의 좌굴곡선을 이용하여 압축력을 받는 고정지점 포물선 아치의 극한하중을 평가하였다. 마지막으로 직선 부재의 보-기둥 연성식을 수정하여 고정지점을 갖는 포물선 아치에 적용하였다.

내압과 내면 굽힘하중 조건에서 곡관의 거동에 미치는 굽힘각의 영향 (Effect of Bend Angle on the Behavior of pipe Bend under Internal Pressure and In-Plane Bending toads)

  • 김진원;나만균
    • 한국안전학회지
    • /
    • 제20권2호
    • /
    • pp.18-25
    • /
    • 2005
  • This study performed finite element analysis on the pipe bend with various bend angles under loading conditions of internal pressure and combined pressure and bending, to investigate the effect of bend angle on the collapse behavior of pipe bend and on the stress state in the bend region. In the analysis, the pipe bends with bend angle of $5\~90^{\circ}$ were considered, and the bending moment was applied as in-plane closing and opening modes. From the results of analysis, it was found that the collapse moment of pipe bend increases with decreasing bend angle. As the bend angle decreases, also, the equivalent stress at intrados region increases regardless of bending mode. Under closing mode bending especially, the increase in stress at intrados is significant so that the maximum stress region moves from crown to intrados with decreasing bend angle.

평면 굽힘 피로하중에 의한 알루미늄 합금재의 모서리 균열 전파거동에 관한 연구 (An investigation of the behavior in the corner crack propagation of Al-Alloy by the plane bending fatigue)

  • 김영식;김영종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.49-63
    • /
    • 1984
  • The 5086-H116 Al-Alloy plate specimens having an edge through-thickness notch were investigated to find out the characteristics of the corner crack propagation by the plane bending fatigue. The experiments were also carried out in order to clarify the change of the corner crack propagation behaviour due to the various materials and their thicknesses. In addition, the retardation effect of overload on the corner crack propagation was quantatively studied. Main results obtained are as follows; 1. In the case of estimating the crack propagation rate of the corner crack, it is more reasonable to consider the growth rate of fracture surface area than that of crack length. 2. The shape of the corner crack growing in the plane plate under the bending fatigue can be estimated. 3. The crack propagation rate increases with the increasing of the thickness and the decreasing of the Young's modulus of materials. 4. Regardless of a thickness and kind of materials of specimen, the characteristics of the corner crack propagation can be concluded. 5. The retardation effect of overload is distinct in the corner crack propagation.

  • PDF

平面굽힘 疲勞荷重 에 의한 鋼熔接部 의 모서리균열 傳파特性 (A Study on the Corner Crack Propagation by Plane Bending Fatigue in Butt Welded Joints of Steel)

  • 김영식;조상명
    • 대한기계학회논문집
    • /
    • 제6권3호
    • /
    • pp.232-238
    • /
    • 1982
  • The behavior of corner crack propagation by unidirectional plane bending fatigue was investigated in the butt welded joints of SS41 and SM50 steel plates including an edge through-thickness notch. The properties of fatigue crack propagation were inspected in the weld metal, heat-affected zone, and base metal of the welded joints. Main results obtained are as follows; (1) When a plate with an edge through-thickness notch is loaded by plane bending fatigue in indirection, the 2 variant corner cracks on the upper and lower edge of the plate are initiated and propagated respectively from the notch. (2) In case of a specimen containing a corner crack, it is more reasonable to estimate the crack propagation rate by area of fracture surface than by crack surface length. (3) The rate of fatigue crack propagation becomes faster in the following order; weld metal, heat-affected zone, and base metal. (4) The specimen including reinforcement shape is rapidly failed throughout bond due to effect of its shape when the repeated load exceeds a certain cycle.

감육이 존재하고 내압과 굽힘하중의 복합하중을 받는 T 분기관의 한계하중 (Limit Loads for Piping Branch Junctions with Local Wall-thinning under Internal Pressure and In-plane Bending)

  • 한재준;이국희;김윤재;이성호;박치용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.299-304
    • /
    • 2008
  • This paper presents plastic limit loads of piping branch junctions with local wall thinning under combined pressure and in-plane bending, based on systematic three-dimensional finite element limit analyses using elastic-perfectly plastic materials. An ideal branch junction without weld or reinforcement around the intersection is considered with two locations of wall thinning; one in the run pipe, and the other in the branch pipe. Based on FE results, effects of thinning geometries on plastic limit moments are quantified and simple approximations of plastic limit loads are proposed.

  • PDF

Plane strain bending of a bimetallic sheet at large strains

  • Alexandrov, Sergei E.;Kien, Nguyen D.;Manh, Dinh V.;Grechnikov, Fedor V.
    • Structural Engineering and Mechanics
    • /
    • 제58권4호
    • /
    • pp.641-659
    • /
    • 2016
  • This paper deals with the pure bending of incompressible elastic perfectly plastic two-layer sheets under plane strain conditions at large strains. Each layer is classified by its yield stress, shear modulus of elasticity and its initial percentage thickness in relation to the whole sheet. The solution found is semi-analytic. In particular, a numerical technique is only necessary to solve transcendental equations. The general solution is cumbersome because different analytic expressions for the radial and circumferential stresses should be adopted in different regions of the whole sheet. In particular, there are several alternative ways a plastic region (or plastic regions) can propagate. However, for any given set of material and process parameters the solution to the problem consists of a sequence of rather simple analytic expressions connected by transcendental equations. The general solution is illustrated by a simple example.