• Title/Summary/Keyword: in-plane and out-of-plane

Search Result 1,847, Processing Time 0.035 seconds

A Study on Remaining Efficiency of Thermal Straightening after Block Lifting

  • Ha, Yunsok;Yi, Myungsu
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.3
    • /
    • pp.148-156
    • /
    • 2015
  • Deck plates of ships or offshore structures would make out-of-plane distortion for their thin thickness. These distortions are usually straightened by thermal straightening such as flame heating method. After thermal straightening, the blocks are lifted and moved by cranes to assemble it at dry-dock stage. After this lifting process, out-of-plane deformation again happens frequently. And then, they continuously cause quality and accuracy problems in the final dry-dock process. So, it takes more time for repair and correction working. According to preceding research, the lifting process by cranes would offset the effect on thermal straightening. The target of this study is to develop a methodology analyzing the remaining efficiency of thermal straightening after block lifting. The development was based on the assumption of yield state at straightening region. Therefore the remaining efficiency was obtained by different stiffness slope while lifting & relieving. The efficiency formula was designed using inherent strain, and we made a table of zero-efficiency by cooling speed and class rule's steels. As a result, if the stress orthogonal to straightened line is calculated during lifting analysis by FEA, the efficiency can be obtained linearly to the values in the table. Finally, even optimized carling position can be designed by considering the regional data from series project and welding region on deck.

Fabrication of Microneedle Array Using Inclined LIGA Process (경사 LIGA 공정을 이용한 미세 바늘 어레이의 제작)

  • Moon, Sang-Jun;Lee, Seung-S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1871-1876
    • /
    • 2004
  • We demonstrate a novel fabrication technology for the microneedle array that can be used in the medical test field, which is transdermal drug delivery and blood analyte sampling. Previous researchers have used silicon-processed micromachining, a reactive ion etching, and molding techniques for the fabrication of microneedle array. However, these fabrication techniques have somewhat limitations apply to the microneedle array fabrication according to its application. Inclined LIGA process is suggested to overcome these problems. This process provides easier, sharper and longer out-of-plane microneedle array structure than conventional silicon-processed fabrication method did. Additionally, because of the advantage of the LIGA process based on mold fabrication for mass production, the polymer, PMMA(PolyMethylMethAcrylate), based microneedle array is useful as the mold base of nickel electroplating process; on the other hand, silicon-processed microneedle array is used in itself. In this research, we fabricate different types of out-of-plane microneedle array, which have different shape of tip, base and hole structure, using the inclined LIGA process. The fabricated microneedles have proper mechanical strength, height and sharpness to puncture human hand epidermis or dermis with less pain and without needle tip break during penetrating the skin.

Stereoscopic micro-PIV measurements of jet flow (미세제트 유동의 Stereoscopic micro-PIV측정)

  • Yu, Cheong-Hwan;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.1
    • /
    • pp.43-48
    • /
    • 2007
  • Micro-PIV(particle image velocimetry) has been widely used to measure the velocity of micro flow. Although this micro-PIV method can give accurate 2D instantaneous velocity information of mea-surement plane, it cannot resolve the out of plane component of velocity vectors. Lots of the micro fluidic devices generate three-dimensional flow and 3D measurement of velocity is useful to understand the physics of micro flow phenomena. In this study, we constructed stereoscopic micro-PIV(SMPIV) system and applied this method to the impinging micro jet flow. The results show that this method can produce accu-rate 3D reconstruction of micro jet flow.

Design Method of Steel Slit Shear Walls with Tapered Links for Structural Condition Assessment

  • He, Liusheng;Wu, Chen;Jiang, Huanjun
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.361-368
    • /
    • 2020
  • The authors developed a new type of steel slit shear wall (SSSW) having the function of structural condition assessment through visually inspecting the out-of-plane deformation of the designed tapered links subjected to lateral deformation. To facilitate its practical application, this paper studies how to design dimensions of the tapered links. Two parameters, the width-to-thickness ratio of the tapered links and steel yield stress, were studied. The performance of structural condition assessment was affected by both parameters with the width-to-thickness ratio being the controlling one. Through both numerical and experimental study, the designed width-to-thickness ratio of tapered links for different levels of structural condition assessment was established considering the effect of different steel grades used. In practice, the dimensions of tapered links can be determined following the design equation provided. Finally, a design procedure for the proposed SSSW system is provided.

Vibration characteristics analysis on the composite laminate plate under the tensile loading by ESPI method (ESPI법에 의한 인장을 받는 복합재 평판의 진동 특성 해석)

  • 김경석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.69-73
    • /
    • 1999
  • This study discusses a non-contact optical technique, electronic speckle pattern interferometry(ESPI), that is well suited for in-plane and out-of-plane deformation measurement. AS4/PEEK[30/-30/90]s, composite laminate plate was analyzed by ESPI to determine the vibration characteristics with tensile loading and without it. vibration mode shapes are quantitatively compared with the result of numerical analysis. The experimental results agree well with those of numerical analysis. we found that when the composite laminate plate is under the tensile loading, vibration modes can be measured with high accuracy by ESPI.

  • PDF

Strengthening of perforated walls in cable-stayed bridge pylons with double cable planes

  • Cheng, Bin;Wu, Jie;Wang, Jianlei
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.811-831
    • /
    • 2015
  • This paper focuses on the strengthening methods used for improving the compression behaviors of perforated box-section walls as provided in the anchorage zones of steel pylons. Rectangular plates containing double-row continuous elliptical holes are investigated by employing the boundary condition of simple supporting on four edges in the out-of-plane direction of plate. Two types of strengthening stiffeners, named flat stiffener (FS) and longitudinal stiffener (LS), are considered. Uniaxial compression tests are first conducted for 18 specimens, of which 5 are unstrengthened plates and 13 are strengthened plates. The mechanical behaviors such as stress concentration, out-of-plane deformation, failure pattern, and elasto-plastic ultimate strength are experimentally investigated. Finite element (FE) models are also developed to predict the ultimate strengths of plates with various dimensions. The results of FE analysis are validated by test data. The influences of non-dimensional parameters including plate aspect ratio, hole spacing, hole width, stiffener slenderness ratio, as well as stiffener thickness on the ultimate strengths are illustrated on the basis of numerous parametric studies. Comparison of strengthening efficiency shows that the continuous longitudinal stiffener is the best strengthening method for such perforated plates. The simplified formulas used for estimating the compression strengths of strengthened plates are finally proposed.

Dynamic Analysis of Laminated Composite and Sandwich Plates Using Trigonometric Layer-wise Higher Order Shear Deformation Theory

  • Suganyadevi, S;Singh, B.N.
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.10-16
    • /
    • 2016
  • A trigonometric Layerwise higher order shear deformation theory (TLHSDT) is developed and implemented for free vibration and buckling analysis of laminated composite and sandwich plates by analytical and finite element formulation. The present model assumes parabolic variation of out-plane stresses through the depth of the plate and also accomplish the zero transverse shear stresses over the surface of the plate. Thus a need of shear correction factor is obviated. The present zigzag model able to meet the transverse shear stress continuity and zigzag form of in-plane displacement continuity at the plate interfaces. Hence, botheration of shear correction coefficient is neglected. In the case of analytical method, the governing differential equation and boundary conditions are obtained from the principle of virtual work. For the finite element formulation, an efficient eight noded $C^0$ continuous isoparametric serendipity element is established and employed to examine the dynamic analysis. Like FSDT, the considered mathematical model possesses similar number of variables and which decides the present models computationally more effective. Several numerical predictions are carried out and results are compared with those of other existing numerical approaches.

Optical technique of precision measurement using Electronic Speckle Pattern Interferometry (ESPI를 이용한 광학식 정밀 계측 기술)

  • 은재정;정영환;최평석;박해수
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.40-46
    • /
    • 2003
  • In this research, we accomplished the interpreting about the vibration of the object, which is the out of plane displacement in the Electronic Speckle Pattern Interferometry(ESPI), one of the optical measuring technique. The vibrating object has a inherent nodal line, therefore we can get the information about the vibration of the object by interpreting it. we used a speaker and a cantilever plate for a measurement object, and interpreted it qualitatively by using the Time-Average ESPI. In this experimental result, the speaker has the lower mode of fringe at 550Hz, 570mV, and the higher mode of fringe at 950Hz, 570mV This ESPI is a non-destructive test, and because of using the laser at measuring, it has a high resolution. The ESPI can test vibration mode regardless of the test object size, because the area which illuminated laser is the test area.

  • PDF

Probabilistic Strength at Serviceability Limit State for Normal and SBHS Slender Stiffened Plates Under Uniaxial Compression

  • Rahman, Mahmudur;Okui, Yoshiaki;Anwer, Muhammad Atif
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1397-1409
    • /
    • 2018
  • Stiffened plates with high slenderness parameters show large out-of-plane deflections, due to elastic buckling, which may occur before the plates reach their ultimate strength. From a serviceability point of view, restriction of out-of-plane deflections exceeding the fabrication tolerance is of primary importance. Compressive strength at the serviceability limit state (SLS) for slender stiffened plates under uniaxial stress was investigated through nonlinear elasto-plastic finite element analysis, considering both geometric and material nonlinearity. Both normal and high-performance steel were considered in the study. The SLS was defined based on a deflection limit and an elastic buckling strength. Probabilistic distributions of the SLS strengths were obtained through Monte Carlo simulations, in association with the response surface method. On the basis of the obtained statistical distributions, partial safety factors were proposed for SLS. Comparisons with the ultimate strength of different design codes e.g. Japanese Code, AASHTO, and Canadian Code indicate that AASHTO and Canadian Code provide significantly conservative design, while Japanese Code matches well with a 5% non-exceedance probability for compressive strength at SLS.

Study on Channel-bed Fluctuation Using Aerial Photographs(II) -Analysis of spatial-temporal distribution on the deposits- (항공사진(航空寫眞)을 이용(利用)한 하상변동(河床變動)에 관한 연구(硏究)(II) -하상퇴적지(河床堆積地)의 시(時)·공간적(空間的) 분포(分布) 해석(해석)-)

  • Chun, Kun Woo;Kim, Kyoung Nam;Cha, Du Song
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.3
    • /
    • pp.369-376
    • /
    • 1995
  • Black and White aerial photogrphs are much useful to obtain the information on the channel-bed fluctuation in the following aspects. 1. In the decision of river width, the linear regression formula between the value of aerial photograph interpretation and that of field surveying is Y=1.0+0.94X(the decision coefficient is $r^2=0.98$). Therefore, aerial photographs are proved effective for the measurement of river width. 2. Aerial photograph interpretation makes it possible to classify the plane channel and the deposits in river, and suggests the situation of the plane distribution of deposits, the size of channel and the course of channel formation. 3. The periodical channel situation can be figured out through the interpretation of aerial photographs pictured in different times. Also, the comparing and analyzing each interpretated information can be able to guess the course of the variation of channel influencing powerfully channel - bed fluctuation. 4. The microtopographic map of river can be made through the decision of river with, the interpretation of the plane shape of channel - bed and the analysis of variation of channel. On the basis of this map, the plane analysis of deposit is possible.

  • PDF