• Title/Summary/Keyword: in-network aggregation

Search Result 266, Processing Time 0.023 seconds

i-LEACH : Head-node Constrained Clustering Algorithm for Randomly-Deployed WSN (i-LEACH : 랜덤배치 고정형 WSN에서 헤더수 고정 클러스터링 알고리즘)

  • Kim, Chang-Joon;Lee, Doo-Wan;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.198-204
    • /
    • 2012
  • Generally, the clustering of sensor nodes in WSN is a useful mechanism that helps to cope with scalability problem and, if combined with network data aggregation, may increase the energy efficiency of the network. The Hierarchical clustering routing algorithm is a typical algorithm for enhancing overall energy efficiency of network, which selects cluster-head in order to send the aggregated data arriving from the node in cluster to a base station. In this paper, we propose the improved-LEACH that uses comparably simple and light-weighted policy to select cluster-head nodes, which results in reduction of the clustering overhead and overall power consumption of network. By using fine-grained power model, the simulation results show that i-LEACH can reduce clustering overhead compared with the well-known previous works such as LEACH. As result, i-LEACH algorithm and LEACH algorithm was compared, network power-consumption of i-LEACH algorithm was improved than LEACH algorithm with 25%, and network-traffic was improved 16%.

Security Characteristics of D-MAC in Convergence Network Environment (융합망 환경에서 D-MAC의 보안 특성)

  • Hong, Jinkeun
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.323-328
    • /
    • 2014
  • D-MAC protocol is used convergence network, which is designed to connect wireless link between things. This protocol is supported to local data exchange and aggregation among neighbor nodes, and distributed control packet from sink to sensor node. In this paper, we analysis about efficiency of power consumption according to whether or not security authentication of D-MAC in convergence network. If authentication scheme is applied to MAC communication, it is related to power consumption of preamble whether or not with and without authentication process. It is reduced to energy consumption against denial attack of service, when it is applied to authentication. Future work will take the effort to deal with security authentication scheme.

Multi-path Routing Protocol with Optimum Routes Finding Scheme in Wireless Sensor Networks

  • Keuma, Tae-Hoon;Bu, Ki-Dong;Kim, Hyun-Sung;Lee, Sung-Woon
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2008.10b
    • /
    • pp.449-454
    • /
    • 2008
  • Finding an energy efficient route is one of the very important issues in the wireless sensor networks. The route scheme should consider both of the energy level of sensor nodes and the number of hops at the same time. First of all, this paper proposes an optimum routes finding scheme (ORFS), which could be used in the sensor network routing protocols. The scheme uses an optimum value for the path with the considerations of both the minimum energy level of a path and the number of hops at the same time. After that, this paper proposes a routing protocol based on the ORFS for how it could be used for the multipath directed diffusion with data aggregation (MDD-A), to get the better energy efficiency. The analysis result shows that the proposed routing protocol could lengthen the network life cycle about 18.7% compared to the previous MDD-A related protocols.

  • PDF

Design and Implementation of the Sinkhole Traceback Protocol against DDoS attacks (DDoS 공격 대응을 위한 Sinkhole 역추적 프로토콜 설계 및 구현)

  • Lee, Hyung-Woo;Kim, Tae-Su
    • Journal of Internet Computing and Services
    • /
    • v.11 no.2
    • /
    • pp.85-98
    • /
    • 2010
  • An advanced and proactive response mechanism against diverse attacks on All-IP network should be proposed for enhancing its security and reliability on open network. There are two main research works related to this study. First one is the SPIE system with hash function on Bloom filter and second one is the Sinkhole routing mechanism using BGP protocol for verifying its transmission path. Therefore, advanced traceback and network management mechanism also should be necessary on All-IP network environments against DDoS attacks. In this study, we studied and proposed a new IP traceback mechanism on All-IP network environments based on existing SPIE and Sinkhole routing model when diverse DDoS attacks would be happen. Proposed mechanism has a Manager module for controlling the regional router with using packet monitoring and filtering mechanism to trace and find the attack packet's real transmission path. Proposed mechanism uses simplified and optimized memory for storing and memorizing the packet's hash value on bloom filter, with which we can find and determine the attacker's real location on open network. Additionally, proposed mechanism provides advanced packet aggregation and monitoring/control module based on existing Sinkhole routing method. Therefore, we can provide an optimized one in All-IP network by combining the strength on existing two mechanisms. And the traceback performance also can be enhanced compared with previously suggested mechanism.

Lifetime Escalation and Clone Detection in Wireless Sensor Networks using Snowball Endurance Algorithm(SBEA)

  • Sathya, V.;Kannan, Dr. S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1224-1248
    • /
    • 2022
  • In various sensor network applications, such as climate observation organizations, sensor nodes need to collect information from time to time and pass it on to the recipient of information through multiple bounces. According to field tests, this information corresponds to most of the energy use of the sensor hub. Decreasing the measurement of information transmission in sensor networks becomes an important issue.Compression sensing (CS) can reduce the amount of information delivered to the network and reduce traffic load. However, the total number of classification of information delivered using pure CS is still enormous. The hybrid technique for utilizing CS was proposed to diminish the quantity of transmissions in sensor networks.Further the energy productivity is a test task for the sensor nodes. However, in previous studies, a clustering approach using hybrid CS for a sensor network and an explanatory model was used to investigate the relationship between beam size and number of transmissions of hybrid CS technology. It uses efficient data integration techniques for large networks, but leads to clone attacks or attacks. Here, a new algorithm called SBEA (Snowball Endurance Algorithm) was proposed and tested with a bow. Thus, you can extend the battery life of your WSN by running effective copy detection. Often, multiple nodes, called observers, are selected to verify the reliability of the nodes within the network. Personal data from the source centre (e.g. personality and geographical data) is provided to the observer at the optional witness stage. The trust and reputation system is used to find the reliability of data aggregation across the cluster head and cluster nodes. It is also possible to obtain a mechanism to perform sleep and standby procedures to improve the life of the sensor node. The sniffers have been implemented to monitor the energy of the sensor nodes periodically in the sink. The proposed algorithm SBEA (Snowball Endurance Algorithm) is a combination of ERCD protocol and a combined mobility and routing algorithm that can identify the cluster head and adjacent cluster head nodes.This algorithm is used to yield the network life time and the performance of the sensor nodes can be increased.

A Study of Energy Efficient Clustering in Wireless Sensor Networks (무선 센서네트워크의 에너지 효율적 집단화에 관한 연구)

  • Lee Sang Hak;Chung Tae Choong
    • The KIPS Transactions:PartC
    • /
    • v.11C no.7 s.96
    • /
    • pp.923-930
    • /
    • 2004
  • Wireless sensor networks is a core technology of ubiquitous computing which enables the network to aware the different kind of context by integrating exiting wired/wireless infranet with various sensor devices and connecting collected environmental data with applications. However it needs an energy-efficient approach in network layer to maintain the dynamic ad hoc network and to maximize the network lifetime by using energy constrained node. Cluster-based data aggregation and routing are energy-efficient solution judging from architecture of sensor networks and characteristics of data. In this paper. we propose a new distributed clustering algorithm in using distance from the sink. This algorithm shows that it can balance energy dissipation among nodes while minimizing the overhead. We verify that our clustering is more en-ergy-efficient and thus prolongs the network lifetime in comparing our proposed clustering to existing probabilistic clustering for sensor network via simulation.

A Secure, Hierarchical and Clustered Multipath Routing Protocol for Homogenous Wireless Sensor Networks: Based on the Numerical Taxonomy Technique

  • Hossein Jadidoleslamy
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.121-136
    • /
    • 2023
  • Wireless Sensor Networks (WSNs) have many potential applications and unique challenges. Some problems of WSNs are: severe resources' constraints, low reliability and fault tolerant, low throughput, low scalability, low Quality of Service (QoS) and insecure operational environments. One significant solution against mentioned problems is hierarchical and clustering-based multipath routing. But, existent algorithms have many weaknesses such as: high overhead, security vulnerabilities, address-centric, low-scalability, permanent usage of optimal paths and severe resources' consumption. As a result, this paper is proposed an energy-aware, congestion-aware, location-based, data-centric, scalable, hierarchical and clustering-based multipath routing algorithm based on Numerical Taxonomy technique for homogenous WSNs. Finally, performance of the proposed algorithm has been compared with performance of LEACH routing algorithm; results of simulations and statistical-mathematical analysis are showing the proposed algorithm has been improved in terms of parameters like balanced resources' consumption such as energy and bandwidth, throughput, reliability and fault tolerant, accuracy, QoS such as average rate of packet delivery and WSNs' lifetime.

An Hierarchical Key Management Scheme for Assure Data Integrity in Wireless Sensor Network (WSN에서 데이터 무결성을 보장하는 계층적인 키 관리 기법)

  • Jeong, Yoon-Su;Hwang, Yoon-Cheol;Lee, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3C
    • /
    • pp.281-292
    • /
    • 2008
  • A main application of sensor networks are to monitor and to send information about a possibly hostile environment to a powerful base station connected to a wired network. To conserve power from each sensor, intermediate network nodes should aggregate results from individual sensors. However, it can make it that a single compromised sensor can render the network useless, or worse, mislead the operator into trusting a false reading. In this paper, we propose a protocol to give us a key aggregation mechanism that intermediate network nodes could aggregate data more safely. The proposed protocol is more helpful at multi-tier network architecture in secure sessions established between sensor nodes and gateways. From simulation study, we compare the amount of the energy consumption overhead, the time of key transmission and the ratio of of key process between the proposed method and LHA-SP. The simulation result of proposed protocol is low 3.5% a lord of energy consumption than LHA-SP, the time of key transmission and the ration of key process is get improved result of each 0.3% and 0.6% than LHA-SP.

An Energy-Efficient In-Network Join Query Processing using Synopsis and Encoding in Sensor Network (센서 네트워크에서 시놉시스와 인코딩을 이용한 에너지 효율적인 인-네트워크 조인 질의 처리)

  • Yeo, Myung-Ho;Jang, Yong-Jin;Kim, Hyun-Ju;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.2
    • /
    • pp.126-134
    • /
    • 2011
  • Recently, many researchers are interested in using join queries to correlate sensor readings stored in different regions. In the conventional algorithm, the preliminary join coordinator collects the synopsis from sensor nodes and determines a set of sensor readings that are required for processing the join query. Then, the base station collects only a part of sensor readings instead of whole readings and performs the final join process. However, it has a problem that incurs communication overhead for processing the preliminary join. In this paper, we propose a novel energy-efficient in-network join scheme that solves such a problem. The proposed scheme determines a preliminary join coordinator located to minimize the communication cost for the preliminary join. The coordinator prunes data that do not contribute to the join result and performs the compression of sensor readings in the early stage of the join processing. Therefore, the base station just collects a part of compressed sensor readings with the decompression table and determines the join result from them. In the result, the proposed scheme reduces communication costs for the preliminary join processing and prolongs the network lifetime.

In-network Aggregation Query Processing using the Data-Loss Correction Method in Data-Centric Storage Scheme (데이터 중심 저장 환경에서 소설 데이터 보정 기법을 이용한 인-네트워크 병합 질의 처리)

  • Park, Jun-Ho;Lee, Hyo-Joon;Seong, Dong-Ook;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.37 no.6
    • /
    • pp.315-323
    • /
    • 2010
  • In Wireless Sensor Networks (WSNs), various Data-Centric Storages (DCS) schemes have been proposed to store the collected data and to efficiently process a query. A DCS scheme assigns distributed data regions to sensor nodes and stores the collected data to the sensor which is responsible for the data region to process the query efficiently. However, since the whole data stored in a node will be lost when a fault of the node occurs, the accuracy of the query processing becomes low, In this paper, we propose an in-network aggregation query processing method that assures the high accuracy of query result in the case of data loss due to the faults of the nodes in the DCS scheme. When a data loss occurs, the proposed method creates a compensation model for an area of data loss using the linear regression technique and returns the result of the query including the virtual data. It guarantees the query result with high accuracy in spite of the faults of the nodes, To show the superiority of our proposed method, we compare E-KDDCS (KDDCS with the proposed method) with existing DCS schemes without the data-loss correction method. In the result, our proposed method increases accuracy and reduces query processing costs over the existing schemes.