• Title/Summary/Keyword: in-memory system

Search Result 3,242, Processing Time 0.044 seconds

Design of the Virtual SD Memory Card System on the Embedded Linux (임베디드 리눅스에서의 가상 SD 메모리 카드 시스템 설계)

  • Moon, Ji-Hoon;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.77-82
    • /
    • 2014
  • SD memory cards are widely used in portable digital devices, and most of them exploit NAND flash memory as their storage, so that they have a feature of storing users' important data safely with low costs. In case of using NAND flash memory as storage, however, there is no method to store users' data if memory capacity is insufficient when transferring a large volume of data. This paper proposes a virtual SD memory card system. It used a SD memory card device driver to process data requested from a host by exploiting external storage rather than by exploiting flash memory as a memory core for storing data to the SD memory card. For experiment, it used the FPGA-based SD card slave controller IP on the SMC controller with a S3C2450 ARM CPU to test.

Memory-saving Real-time Collaborative Editing System using Valid-Time Operational Transformation (유효시간 운영변환을 이용한 메모리 절약형 실시간 협업 편집 시스템)

  • Kwon, Oh-Seok;Kim, Young-Bong;Kwon, Oh-Jun;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.232-241
    • /
    • 2018
  • Operational Transformation (OT) algorithms for real-time collaborative editing systems are becoming increasingly important due to the increased demand for collaborative data processing. The operational transformation algorithm is a technique for real-time concurrency control and consistency maintenance with non-locking technique, and many studies have been conducted to overcome three issues of convergence, causality-prevention, and intention-prevention. However, previous work has the disadvantage of wasting memory by storing all operations that occurred during an edit operation in the history buffer to solve this problem. Therefore, we propose a memory-saving real-time collaborative editing system that maintains a constant memory space and concurrency control through a method of applying the valid-time to each user-generated operation in order to reduce memory waste. This system prevents long-term memory occupation of client-generated operations, thus it reduces the space and time complexity even with low-rate of collaboration work, so that the performance degradation avoids.

Application Performance Evaluation in Main Memory Database System (메인메모리 데이터베이스시스템에서의 어플리케이션 성능 평가)

  • Kim, Hee-Wan;Ahn, Yeon S.
    • Journal of Digital Contents Society
    • /
    • v.15 no.5
    • /
    • pp.631-642
    • /
    • 2014
  • The main memory DBMS is operated which the contents of the table that resides on a disk at the same time as the drive is in the memory. However, because the main memory DBMS stores the data and transaction log file using the disk file system, there are a limit to the speed at which the CPU accesses the memory. In this paper, I evaluated the performance through analysis of the application side difference the technology that has been implemented in Altibase system of main memory DBMS and Sybase of disk-based DBMS. When the application performance of main memory DBMS is in comparison with the disk-based DBMS, the performance of main memory DBMS was outperformed 1.24~3.36 times in the single soccer game, and was outperformed 1.29~7.9 times in the soccer game / special soccer. The result of sale transaction response time showed a fast response time of 1.78 ~ 6.09 times.

Design of Optimized SWAP System for Next-Generation Storage Devices (차세대 저장 장치에 최적화된 SWAP 시스템 설계)

  • Han, Hyuck
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.4
    • /
    • pp.9-16
    • /
    • 2015
  • On modern operating systems such as Linux, virtual memory is a general way to provide a large address space to applications by using main memory and storage devices. Recently, storage devices have been improved in terms of latency and bandwidth, and it is expected that applications with large memory show high-performance if next-generation storage devices are considered. However, due to the overhead of virtual memory subsystem, the paging system can not exploit the performance of next-generation storage devices. In this study, we propose several optimization techniques to extend memory with next-generation storage devices. The techniques are to allocate block addresses of storage devices for write-back operations as well as to configure the system parameters, and we implement the techniques on Linux 3.14.3. Our evaluation through using multiple benchmarks shows that our system has 3 times (/24%) better performance on average than the baseline system in the micro(/macro)-benchmark.

An Efficient Network System Call Interface supporting minimum memory copy (메모리 복사를 최소화화는 효율적인 네트워크 시스템 호출 인터패이스)

  • 송창용;김은기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4B
    • /
    • pp.397-402
    • /
    • 2004
  • In this paper, we have designed and simulated a new file transmission method. This method restricts memory copy and context switching happened in traditional file transmission. This method shows an improved performance than traditional method in network environment. When the UNIX/LINUX system that uses the existing file transfer technique transmits a packet to the remote system, a memory copy between the user and kernel space occurs over twice at least. Memory copy between the user and kernel space increase a file transmission time and the number of context switching. As a result, the existing file transfer technique has a problem of deteriorating the performance of file transmission. We propose a new algorithm for solving these problems. It doesn't perform memory copy between the user and kernel space. Hence, the number of memory copy and context switching is limited to the minimum. We have modified the network related source code of LINUX kernel 2.6.0 to analyzing the performance of proposed algorithm and implement new network system calls.

Quick Semi-Buddy Scheme for Dynamic Storage Allocation in Real-Time Systems (실시간 시스템에서의 동적 스토리지 할당을 위한 빠른 수정 이진 버디 기법)

  • 이영재;추현승;윤희용
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.3
    • /
    • pp.23-34
    • /
    • 2002
  • Dynamic storage allocation (DSA) is a field fairly well studied for a long time as a basic problem of system software area. Due to memory fragmentation problem of DSA and its unpredictable worst case execution time, real-time system designers have believed that DSA may not be promising for real-time application service. Recently, the need for an efficient DSA algorithm is widely discussed and the algorithm is considered to be very important in the real-time system. This paper proposes an efficient DSA algorithm called QSB (quick semi-buddy) which is designed to be suitable for real-time environment. QSB scheme effectively maintains free lists based on quick-fit approach to quickly accommodate small and frequent memory requests, and the other free lists devised with adaptation upon a typical binary buddy mechanism for bigger requests in harmony for the .improved performance. Comprehensive simulation results show that the proposed scheme outperforms QHF which is known to be effective in terms of memory fragmentation up to about 16%. Furthermore, the memory allocation failure ratio is significantly decreased and the worst case execution time is predictable.

  • PDF

Design of Efficient Memory Architecture for Coeff_Token Encoding in H.264/AVC Video Coding Standard (H.264/AVC 동영상 압축 표준에서 Coeff_token 부호화를 위한 효율적임 메모리 구조 설계)

  • Moon, Yong Ho;Park, Kyoung Choon;Ha, Seok Wun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 2010
  • In this paper, we propose an efficient memory architecture for coeff_token encoding in H.264/AVC standard. The VLCTs used to encode the coeff_token syntax element are implemented with the memory. In general, the size of memory must be reduced because it affects the cost and operation speed of the system. Based on the analysis for the codewords in VLCTs, new memory architecture is designed in this paper. The proposed memory architecture results in about 24% memory saving, compared to the conventional memory architecture.

A Study on the Shape Memory Characteristic Behaviors of Ti-42.5at.%Ni-2.0at.%Cu Alloys in Tension and Compression Condition (Ti-42.5at.%Ni-2.0at.%Cu합금의 인장 및 압축에 따른 형상기억특성에 관한 연구)

  • Woo, Heung-Sik;Cho, Jae-Whan;Park, Yong-Gyu
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.1-5
    • /
    • 2009
  • NiTiCu alloys can produce a large force per unit volume and operate with a simple mechanism. For this reasons, it has been widely studied for application as a micro actuator. So in this study, one-way and two way shape memory effects of Ti-42.5at%Ni-2.0at%Cu alloys are studied. In the case of one-way shape memory effects, shape memory recoverable stress and strain of this alloys were measured by means of tension and compression tests under constant temperature. The strains by tension and compression stress were perfectly recovered by heating at any testing conditions also shape memory recoverable stress increased to 116 MPa in tension tests and to 260 MPa in compression tests. In the case of two-way shape memory effects, transformation temperatures from thermal cycling under constant uniaxial applied tension and compression loads linearly increased by increasing external loads and their maximum recoverable strain is 3.8% at 100MPa tensile condition and 2.2% at 125 MPa compression condition.

Considering Read and Write Characteristics of Page Access Separately for Efficient Memory Management

  • Hyokyung Bahn
    • International journal of advanced smart convergence
    • /
    • v.12 no.1
    • /
    • pp.70-75
    • /
    • 2023
  • With the recent proliferation of memory-intensive workloads such as deep learning, analyzing memory access characteristics for efficient memory management is becoming increasingly important. Since read and write operations in memory access have different characteristics, an efficient memory management policy should take into accountthe characteristics of thesetwo operationsseparately. Although some previous studies have considered the different characteristics of reads and writes, they require a modified hardware architecture supporting read bits and write bits. Unlike previous approaches, we propose a software-based management policy under the existing memory architecture for considering read/write characteristics. The proposed policy logically partitions memory space into the read/write area and the write area by making use of reference bits and dirty bits provided in modern paging systems. Simulation experiments with memory access traces show that our approach performs better than the CLOCK algorithm by 23% on average, and the effect is similar to the previous policy with hardware support.

Implementation of the Efficient Shared Memory in the Dual Core System (Dual Core 시스템에서 효율적인 공유 메모리 사용 기능 구현)

  • Jang, Seung Ju
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.543-544
    • /
    • 2009
  • 본 논문은 Linux에서 사용되는 Shared Memory는 동일한 메모리 영역에 여러 개의 프로세스가 접근할 수 있도록 해 주는 기술이다. 본 논문에서는 Shared Memory의 큰 두 갈래 중 커널 단계에서 처리 되는 SVR(System V Release) 형식의 Shared Memory를 다룬다. 본 논문에서는 리눅스 운영체제의 공유 메모리 기능을 Dual Core 시스템에서 동작하도록 구현한다.