• Title/Summary/Keyword: in-memory file systems

Search Result 121, Processing Time 0.022 seconds

Performance Evaluation of a RAM based Storage System NGS

  • Kang, Yun-Hee;Kung, Jae-Ha;Cheong, Seung-Kook
    • International Journal of Contents
    • /
    • v.5 no.4
    • /
    • pp.75-80
    • /
    • 2009
  • Recently high-speed memory array based on RAM, which is a type of solid-state drive (SSD), has been introduced to handle the input/output (I/O) bottleneck. But there are only a few performance studies on RAM based SSD storage with regard to diverse workloads. In this paper, we focus on the file system for RAM based memory array based NGS (Next Generation Storage) system which is running on Linux operating system. Then we perform benchmark tests on practical file systems including Ext3, ReiserFS, XFS. The result shows XFS significantly outperforms other file systems in tests that represent the storage and data requests typically made by enterprise applications in many aspects. The experiment is used to design the dedicated file system for NGS system. The results presented here can help enterprises improve their performance significantly.

Design and Implementation of a File System that Considers the Space Efficiency of NVRAM (비휘발성 메모리의 공간적 효율성을 고려한 파일 시스템의 설계 및 구현)

  • Hyun Choul-Seung;Baek Seung-Jae;Choi Jong-Moo;Lee Dong-Hee;Noh Sam-H.
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.9
    • /
    • pp.615-625
    • /
    • 2006
  • Nonvolatile memory technology is evolving continuously and commercial products such as FeRAM and PRAM are now challenging their markets. As NVRAM has properties of both memory and storage, it can store persistent data objects while allowing fast and random access. To utilize NVRAM for general purpose storing of frequently updated data across power disruptions, some essential features of the file system including naming, recovery, and space management are required while exploiting memory-like properties of NVRAM. Conventional file systems, including even recently developed NVRAM file systems, show very low space efficiency wasting more than 50% of the total space in some cases. To efficiently utilize the relatively expensive NVRAM, we design and implement a new extent-based space-thrifty file system, which we call NEBFS (NVRAM Extent-Based File System). We analyze and compare the space utilization of conventional file systems with NEBFS and validate the results with experimental results observed from running the file system implementations on a system with actual NVRAM installed as well as on systems emulating NVRAM. We show that NEBFS has high space efficiency compared to conventional file systems.

A Study of External Storage Device File Outflow (외장형 저장장치의 파일유출에 관한 연구)

  • Song, Yu-Jin;Lee, Jae-Yong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.2
    • /
    • pp.59-64
    • /
    • 2011
  • A lot of computer users use external memory device. But, same time file efflux incidents are also increasing. There are two ways people use for efflux file. One is moving it after checking file which is running on computer and the other is checking file name only. Checking from running file case, we can identify vestige with running information of applied program but, the case of moving as external device without running file there is no evidence running applied program. So there are a lot of difficulty with forensic investigation. In this paper we suggest the way to help forensic investigation which is method of getting external memory device information of volume and time through its awareness method and connection information and moving to external device without running file after compare the external memory device volume information through link file analysis and getting information of link file formation & access time from link file.

A New File System for Multimedia Data Stream (멀티미디어 데이터 스트림을 위한 파일 시스템의 설계 및 구현)

  • Lee, Minsuk;Song, Jin-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.1 no.2
    • /
    • pp.90-103
    • /
    • 2006
  • There are many file systems in various operating systems. Those are usually designed for server environments, where the common cases are usually 'multiple active users', 'great many small files' And they assume a big main memory to be used as buffer cache. So the existing file systems are not suitable for resource hungry embedded systems that process multimedia data streams. In this study, we designed and implemented a new file system which efficiently stores and retrieves multimedia data steams. The proposed file system has a very simple disk layout, which guarantees a quick disk initialization and file system recovery. And we introduced a new indexing-scheme, called the time-based indexing scheme, with the file system. With the indexing scheme, the file system maintains the relation between time and the location for all the multimedia streams. The scheme is useful in searching and playing the compressed multimedia streams by locating exact frame position with given time, resulting in reduction of CPU processing and power consumption. The proposed file system and its APIs utilizing the time-based indexing schemes were implemented firstly on a Linux environment, though it is operating system independent. In the performance evaluation on a real DVR system, which measured the execution time of multi-threaded reading and writing, we found the proposed file system is maximum 38.7% faster than EXT2 file system.

  • PDF

SAF: A Scheme of Swap Space Allocation in File Systems to Reduce Disk Seek Time (SAF: 디스크 탐색 시간 향상을 위한 파일 시스템 내 스왑 공간 할당 기법)

  • Ahn, Woo-Hyun;Kim, Bo-Gon;Kim, Byung-Gyu;Oh, Jae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1289-1300
    • /
    • 2011
  • In recent computer systems with high-performance, users execute programs needing large memory and programs intensively accessing files simultaneously. Such a large memory requirement makes virtual memory systems access swap spaces in disk, and intensive file accesses require file systems to access file system partitions in disk. Executing the two kinds of programs at once incurs large disk seeks between swap spaces and file system partitions frequently. To solve the problem, this paper proposes a new scheme called SAF to create several swap spaces in a file system partition, where pages to be paged out are stored. When a page is paged out, the scheme stores the page to one of the swap spaces close to a disk location where the most recently accessed file is located. The chosen swap space in the file system partition is closer to the disk location than the traditional swap space, so that our scheme can reduce the large disk seek time spent to move to the traditional swap space in paging out a page. The experiment of our scheme implemented in FreeBSD 6.2 shows that SAF reduces the execution time of several benchmarks over FreeBSD ranging from 14% to 42%.

Real-Time Retrieval of Multimedia Data from Flash Memory Storage Devices (플래시 메모리 저장 장치에서 멀티미디어 데이터의 실시간 재생)

  • Han, Lyong-Cheol;Yang, Hak-Mo;Ryu, Yeon-Seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.1705-1708
    • /
    • 2005
  • Recently, flash memory is becoming popular as storage system to store and retrieve multimedia files. However, there are few researches about multimedia file system for flash memory based storage devices. We have been designing and developing a novel multimedia file systems for flash memory. In this paper, we describe the semantics of real-time retrieval of multimedia data and present scheduling scheme to guarantee the real-time requirements in our multimedia file system.

  • PDF

An Empirical Evaluation Analysis of the Performance of In-memory Bigdata Processing Platform (메모리 기반 빅데이터 처리 프레임워크의 성능개선 연구)

  • Lee, Jae hwan;Choi, Jun;Koo, Dong hun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.3
    • /
    • pp.13-19
    • /
    • 2016
  • Spark, an in-memory big-data processing framework is popular to use for real-time processing workload. Spark can store all intermediate data in the cluster memory so that Spark can minimize I/O access. However, when the resident memory of workload is larger that the physical memory amount of the cluster, the total performance can drop dramatically. In this paper, we analyse the factors of bottleneck on PageRank Application that needs many memory through experiment, and cluster the Spark with Tachyon File System for using memory to solve the factor of bottleneck and then we improve the performance about 18%.

A Secure Deletion Method for NAND Flash File System (NAND 플래시 파일 시스템을 위한 안전 삭제 기법)

  • Lee, Jae-Heung;Oh, Jin-Ha;Kim, Seok-Hyun;Yi, Sang-Ho;Heo, Jun-Young;Cho, Yoo-Kun;Hong, Ji-Man
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.251-255
    • /
    • 2008
  • In most file systems, if a file is deleted, only the metadata of the file is deleted or modified and the file's data is still stored on the physical media. Some users require that deleted files no longer be accessible. This requirement is more important in embedded systems that employ flash memory as a storage medium. In this paper, we propose a secure deletion method for NAND flash file system and apply the method to YAFFS. Our method uses encryption to delete files and forces all keys of a specific file to be stored in the same block. Therefore, only one erase operation is required to securely delete a file. Our simulation results show that the amortized number of block erases is smaller than the simple encryption method. Even though we apply our method only to the YAFFS, our method can be easily applied to other NAND flash file systems.

Efficient Page Allocation Method Considering Update Pattern in NAND Flash Memory (NAND 플래시 메모리에서 업데이트 패턴을 고려한 효율적인 페이지 할당 기법)

  • Kim, Hui-Tae;Han, Dong-Yun;Kim, Kyong-Sok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.5
    • /
    • pp.272-284
    • /
    • 2010
  • Flash Memory differs from the hard disk, because it cannot be overwritten. Most of the flash memory file systems use not-in-place update mechanisms for the update. Flash memory file systems execute sometimes block cleaning process in order to make writable space while performing not-in-place update process. Block cleaning process collects the invalid pages and convert them into the free pages. Block cleaning process is a factor that affects directly on the performance of the flash memory. Thus this paper suggests the efficient page allocation method, which reduces block cleaning cost by minimizing the numbers of block that has valid and invalid pages at a time. The result of the simulation shows an increase in efficiency by reducing more block cleaning costs than the original YAFFS.

Performance Analysis of Flash File System for the Efficient I/O on Smart Device (스마트 기기의 효율적인 I/O를 위한 플래시 파일 시스템 성능 분석)

  • Chung, Kyung-Ho;Kim, Yong-Hwan;Kim, Sang-Jin;Jung, Young-Seok;Kim, Sung-Soo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.3
    • /
    • pp.171-178
    • /
    • 2015
  • Recently NAND flash memory has been found to be the primary cause of low performance in the smart device. NAND flash memory is different from each other the execution time of I/O operations that flash file system is required. Therefore, it is necessary to compare and analyze the flash file system I/O performance for the efficient I/O on smart device. In this paper, it was tested and analyzing the I/O performance of the YAFFS2, JFFS2, UBIFS. Experimental results most read I/O performance is good, but the writing I/O performance is not good. For UBIFS, showed a more good I/O performance compared to other flash file system.