• Title/Summary/Keyword: in-line system

Search Result 11,271, Processing Time 0.037 seconds

Development and Test of Line-Telemetry DPS for KSLV-I Upper Stage (나로호 상단부 Line-Telemetry 데이터처리시스템 개발 및 시험)

  • Kim, Kwang-Soo;Lee, Soo-Jin;Chung, Eui-Seung
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.107-115
    • /
    • 2011
  • The line-telemetry data processing system is necessary for monitoring the status of each onboard systems of KSLV-I upper stage during the ground tests and launch preparation. The mission of line-telemetry system is to provide reference telemetry data and to monitor the status of upper stage. The line-telemetry data processing system consists of a PCM acquisition/processing server, a system management server, and 9 monitoring consoles. In this paper, we will describe the overview of onboard remote measurement system, the design of the line-telemetry data processing system, anomaly setup information for indicating alarm signal in case of abnormal occurrence, and the result of the ground test and flight test.

A Study on the Performance Improvement of a 3-D Shape Measuring System Using Adaptive Pattern Clustering of Line-Shaped Laser Light (선형레이저빔의 적응적 패턴 분할을 이용한 3차원 표면형상 측정 장치의 성능 향상에 관한 연구)

  • Park, Seung-Gyu;Baek, Seong-Hun;Kim, Dae-Gyu;Jang, Won-Seok;Lee, Il-Geun;Kim, Cheol-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.119-124
    • /
    • 2000
  • One of the main problems in 3D shape measuring systems that use the triangulation of line-shaped laser light is precise center line detection of line-shaped laser stripe. The intensity of a line-shaped laser light stripe on the CCD image varies following to the reflection angles, colors and shapes of objects. In this paper, a new center line detection algorithm to compensate the local intensity variation on a line-shaped laser light stripe is proposed. The 3-D surface shape measuring system using the proposed center line detection algorithm can measure 3-D surface shape with enhanced measurement resolution by using the dynamic shape reconstruction with adaptive pattern clustering of the line-shaped laser light. This proposed 3-D shape measuring system can be easily applied to practical situations of measuring 3-D surface by virtue of high speed measurement and compact hardware compositions.

  • PDF

Development of Line Standards Measurement System Using an Optical Microscope (광학 현미경을 이용한 선표준물 측정 시스템 개발)

  • Kim, Jong-Ahn;Kim, Jae-Wan;Kang, Chu-Shik;Eom, Tae-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.72-78
    • /
    • 2009
  • We developed a line standards measurement system using an optical microscope and measured two kinds of line standards. It consists of three main parts: an optical microscope module including a CCD camera, a stage system with a linear encoder, and a measurement program for a microscopic image processing. The magnification of microscope part was calibrated using one-dimensional gratings and the angular motion of stage was measured to estimate the Abbe error. The threshold level in line width measurement was determined by comparing with certified values of a line width reference specimen, and its validity was proved through the measurement of another line width specimen. The expanded uncertainty (k=2) was about 100 nm in the measurements of $1{\mu}m{\sim}10{\mu}m$ line width. In the comparison results of line spacing measurement, two kinds of values were coincide within the expanded uncertainty, which were obtained by the one-dimensional measuring machine in KRISS and the line standards measurement system. The expanded uncertainty (k=2) in the line spacing measurement was estimated as $\sqrt{(0.098{\mu}m)^2+(1.8{\times}10^{-4}{\times}L)^2}$. Therefore, it will be applied effectively to the calibration of line standards, such as line width and line spacing, with the expanded uncertainty of several hundreds nanometer.

In-situ Blockage Monitoring of Sensing Line

  • Mangi, Aijaz Ahmed;Shahid, Syed Salman;Mirza, Sikander Hayat
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.98-113
    • /
    • 2016
  • A reactor vessel level monitoring system measures the water level in a reactor during normal operation and abnormal conditions. A drop in the water level can expose nuclear fuel, which may lead to fuel meltdown and radiation spread in accident conditions. A level monitoring system mainly consists of a sensing line and pressure transmitter. Over a period of time boron sediments or other impurities can clog the line which may degrade the accuracy of the monitoring system. The aim of this study is to determine blockage in a sensing line using the energy of the composite signal. An equivalent Pi circuit model is used to simulate blockages in the sensing line and the system's response is examined under different blockage levels. Composite signals obtained from the model and plant's unblocked and blocked channels are decomposed into six levels of details and approximations using a wavelet filter bank. The percentage of energy is calculated at each level for approximations. It is observed that the percentage of energy reduces as the blockage level in the sensing line increases. The results of the model and operational data are well correlated. Thus, in our opinion variation in the energy levels of approximations can be used as an index to determine the presence and degree of blockage in a sensing line.

Expert System for Line State Recognition of Distribution System (배전계통 선로상태 파악을 위한 전문가 시스템)

  • Kim, Yoon-Dong;Choi, Byoung-Youn;Mun, Young-Hyun;Song, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.111-114
    • /
    • 1988
  • With the increase of size and complicacy of power systems, distribution system need to operate effectively for high reliability. In order to achieve this purpose, the study which apply expert system to operating plan, restoration on fault and distribution system operating, has developing actively. The essential element of the study is system line state which make a system observe. The development of expert system on power system operation make a system be able to judge state of loading and looping system line, related current direction, substation, and distribution line, atomatically by breaker operation. Finally, this paper developed expert system which decides itself atomatically by rules for deciding system line state.

  • PDF

The characteristic of leakage current of ZnO block varistor according to fault conditions of three-phase four-wire distribution system (3상 배전계통의 고장조건에 따른 산화아연 피뢰기 소자의 누설전류 특성)

  • Lee, B.H.;Choi, H.S.;Kang, S.M.;Park, K.Y.;Lee, S.B.;Oh, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.174-177
    • /
    • 2003
  • Kinds of most frequent faults happened on overhead distribution system are the single line-to-ground fault, the line-to-line fault and the two line-to-ground fault. Occasionally, the three line-to-ground fault and the disconnection of a wire are happened in severe conditions. In this study, the single line-to-ground fault, the line-to-line fault, two line-to-ground fault on three-phase four-wire overhead distribution system were experimentally simulated and characteristics of total leakage current of distribution arrester caused by these faults were investigated. Also, the changing aspect of total leakage current of distribution arrester caused by voltage variation was investigated. In a consequence, abnormal voltages caused by voltage variation, the line-to-line fault, the two line-to-ground fault have a little effect on total leakage current of ZnO arrester. But abnormal voltages caused by the single line-to-ground fault have an important effect on total leakage current of ZnO arrester.

  • PDF

Single line Operation in a double line (복선구간의 단선운행 방안 시뮬레이션)

  • Joung, E.J.;Kim, J.K.;Lee, J.H.;Cho, B.K.;Kim, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.384-386
    • /
    • 1998
  • In the emergency case such as a single line operation in a double line section because of a line broken or train's mal-operation, single line equipments that can operate without a line indication are needed. The main purpose of this study is to verify and analyze the availability of the single line operation that is able to operate without the indication of up or down line, and to offer a realizably alternative method to improve this situation. In order to carry out this study, we concentrated on getting related information. And to adopt the single line operation to existing line, the technology survey of other countries signalling system and the technical analysis of the interior signalling equipment were performed. As a result of this study, the required system and effect of the single line operation system were represented.

  • PDF

Development of a Measurement System for Contact Force Analysis of Trolley Line (전기철도 전차선 접촉력 측정 및 분석시스템 개발)

  • Kim, In-Chol;Choi, Kyu-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.82-87
    • /
    • 2010
  • A measurement system of contact force between overhead contact line and pantograph of train is developed which measures the contact force by using four sets of full-bridge strain gauges instead of load cells and accelerometers. The sensors are installed on the pan head of pantograph and the measured data from the sensors are transmitted to a server system in the train by way of wireless Lan. This configuration of the measuring system makes it easy to install on the trains without any alteration of train system. The measurement system is applied to KTX on the Kyungbu high speed line, and the measured contact force data shows good agreement with those measured by load cell and accelerometers. The waveform of the contact force between overhead contact line and pantograph contains essential information about their conditions. The proposed measurement system can probe any defects on overhead contact lines with train running at high speed, which will be a powerful solution for the maintenance of long-distance overhead contact lines.

Development of a CAPP System for Production and Maintenance of Aircraft Parts (항공기 부품의 생산 및 정비를 위한 공정 계획 시스템의 개발)

  • 노경윤;강수준
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.83-91
    • /
    • 1999
  • Dynamic characteristic of manufacturing stage is understood and the utilization of each machine is maximized by developing on-line dynamic CAPP system to consider the overloads in the aircraft part manufacturing line. In this paper, a scheme of production planning and scheduling system was proposed through inspection about some predeveloped CAPP system. Developed production planning and scheduling system included process planning module. After precise inspection of some FMS line schema at domestic heavy industry, optimized FMS line was applied to aircraft part manufacturing and repairing factory. By virtue of considering overloads of factory and machine through on-line dynamic CAPP system, the utilization of resources is maximized and manufacturing lead time is minimized.

  • PDF

Influence of multi-component ground motions on seismic responses of long-span transmission tower-line system: An experimental study

  • Tian, Li;Ma, Ruisheng;Qiu, Canxing;Xin, Aiqiang;Pan, Haiyang;Guo, Wei
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.583-593
    • /
    • 2018
  • Seismic performance is particularly important for life-line structures, especially for long-span transmission tower line system subjected to multi-component ground motions. However, the influence of multi-component seismic loads and the coupling effect between supporting towers and transmission lines are not taken into consideration in the current seismic design specifications. In this research, shake table tests are conducted to investigate the performance of long-span transmission tower-line system under multi-component seismic excitations. For reproducing the genuine structural responses, the reduced-scale experimental model of the prototype is designed and constructed based on the Buckingham's theorem. And three commonly used seismic records are selected as the input ground motions according to the site soil condition of supporting towers. In order to compare the experimental results, the dynamic responses of transmission tower-line system subjected to single-component and two-component ground motions are also studied using shake table tests. Furthermore, an empirical model is proposed to evaluate the acceleration and member stress responses of transmission tower-line system subjected to multi-component ground motions. The results demonstrate that the ground motions with multi-components can amplify the dynamic response of transmission tower-line system, and transmission lines have a significant influence on the structural response and should not be neglected in seismic analysis. The experimental results can provide a reference for the seismic design and analysis of long-span transmission tower-line system subjected to multi-component ground motions.