• Title/Summary/Keyword: in vivo-induced genes

Search Result 153, Processing Time 0.025 seconds

Low-Intensity Pulsed Ultrasound Promotes BMP9 Induced Osteoblastic Differentiation in Rat Dedifferentiated Fat Cells

  • Fumiaki Setoguchi;Kotaro Sena;Kazuyuki Noguchi
    • International Journal of Stem Cells
    • /
    • v.16 no.4
    • /
    • pp.406-414
    • /
    • 2023
  • Dedifferentiated fat cells (DFATs) isolated from mature adipocytes have a multilineage differentiation capacity similar to mesenchymal stem cells and are considered as promising source of cells for tissue engineering. Bone morphogenetic protein 9 (BMP9) and low-intensity pulsed ultrasound (LIPUS) have been reported to stimulate bone formation both in vitro and in vivo. However, the combined effect of BMP9 and LIPUS on osteoblastic differentiation of DFATs has not been studied. After preparing DFATs from mature adipose tissue from rats, DFATs were treated with different doses of BMP9 and/or LIPUS. The effects on osteoblastic differentiation were assessed by changes in alkaline phosphatase (ALP) activity, mineralization/calcium deposition, and expression of bone related genes; Runx2, osterix, osteopontin. No significant differences for ALP activity, mineralization deposition, as well as expression for bone related genes were observed by LIPUS treatment alone while treatment with BMP9 induced osteoblastic differentiation of DFATs in a dose dependent manner. Further, co-treatment with BMP9 and LIPUS significantly increased osteoblastic differentiation of DFATs compared to those treated with BMP9 alone. In addition, upregulation for BMP9-receptor genes was observed by LIPUS treatment. Indomethacin, an inhibitor of prostaglandin synthesis, significantly inhibited the synergistic effect of BMP9 and LIPUS co-stimulation on osteoblastic differentiation of DFATs. LIPUS promotes BMP9 induced osteoblastic differentiation of DFATs in vitro and prostaglandins may be involved in this mechanism.

Immune gene expression following LPS exposure in the gill of rainbow trout, Oncorhynchus mykiss

  • Hong, Su-Hee
    • Journal of fish pathology
    • /
    • v.18 no.3
    • /
    • pp.287-292
    • /
    • 2005
  • In the present study, immune gene expression of rainbow trout, Oncorhynchus mykiss, against bacterial endotoxin (LPS) was studied in vivo. The expression of prointflammatory cytokine genes (IL-1$\beta$ and TNF-$\alpha$) and IFN-related genes (IRF-I, Mx-3) at gill was assessed by RT-PCR at different time point of day1 and day 3 post-injection. It was shown that the proinflammatory cytokine gene expression at gill was induced 1 day after LPS injection but the expression was not sustained until day 3. Meanwhile upregulated expression of IFN-related genes was found to be only at day 3 post injection, indicating indirect effect of LPS on these genes.

In Vivo Effects of Crataegus pinnatifida Extract for Healthy Longevity

  • In-sun Yu;Mina K. Kim;Min Jung Kim;Jaewon Shim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.680-686
    • /
    • 2023
  • Aging is a complex series of multi-organ processes that occur in various organisms. As such, an in vivo study using an animal model of aging is necessary to define its exact mechanisms and identify anti-aging substances. Using Drosophila as an in vivo model system, we identified Crataegus pinnatifida extract (CPE) as a novel anti-aging substance. Regardless of sex, Drosophila treated with CPE showed a significantly increased lifespan compared to those without CPE. In this study, we also evaluated the involvement of CPE in aging-related biochemical pathways, including TOR, stem cell generation, and antioxidative effects, and found that the representative genes of each pathway were induced by CPE administration. CPE administration did not result in significant differences in fecundity, locomotion, feeding amount, or TAG level. These conclusions suggest that CPE is a good candidate as an anti-aging food substance capable of promoting a healthy lifespan.

Preventive effects of sea cucumber (Apostichopus japonicus) ethanol extract on palmitate-induced vascular injury in vivo

  • Zhang, Chunying;Cha, Seon-Heui
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.2
    • /
    • pp.90-100
    • /
    • 2022
  • Cardiovascular diseases (CVDs) have posed serious public health problems, accounting for nearly 30% of mortality worldwide and their incidence is still increasing. Therefore, new treatment resources are necessary to prevent or manage the ever-increasing population of patients with CVDs. Sea cucumber is well known for its medical and health benefit effects, but it is not well known what/how effect it has on vascular disease. In the present study, we examined the protect effect of sea cucumber, Apostichopus japonicus 80% ethanol extract (AJE) on zebrafish embryo with the stimulation of free fatty acid, palmitate (PA). In vivo study showed that AJE can attenuate PA-induced toxicity through relieving the rapid heartbeat, increasing the survival rate and reducing the malformation in both wild type and Tg (fli1a:eGFP) transgenic zebrafish lines. Additionally, compare with PA treated embryos, the yolk sac area, body length, axial vascular segment (AVS) and intersegmental vessel (ISV) of the co-treatment group of AJE and PA were comparable to the control group. Moreover, AJE lowered the expression of inducible nitric oxide synthase (iNOS), nitric oxide (NO) and inflammation-related genes induced by PA, and inhibited PA-induced vascular development disorders. Our data preliminarily verify that AJE could be a candidate resource for the prevention or therapy of CVDs.

Identification of Enterococcus faecalis antigens specifically expressed in vivo

  • Lee, Seok-Woo;Shet, Uttom K.;Park, Sang-Won;Lim, Hyun-Pil;Yun, Kwi-Dug;Kang, Seong Soo;Kim, Se Eun
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.4
    • /
    • pp.306-313
    • /
    • 2015
  • Objectives: Molecular mechanism of the pathogenicity of Enterococcus faecalis (E. faecalis), a suspected endodontic pathogen, has not yet been adequately elucidated due to limited information on its virulence factors. Here we report the identification of in vivo expressed antigens of E. faecalis by using a novel immunoscreening technique called change-mediated antigen technology (CMAT) and an experimental animal model of endodontic infection. Materials and Methods: Among 4,500 E. coli recombinant clones screened, 19 positive clones reacted reproducibly with hyperimmune sera obtained from rabbits immunized with E. faecalis cells isolated from an experimental endodontic infection. DNA sequences from 16 of these in vivo-induced (IVI) genes were determined. Results: Identified protein antigens of E. faecalis included enzymes involved in housekeeping functions, copper resistance protein, putative outer membrane proteins, and proteins of unknown function. Conclusions: In vivo expressed antigens of E. faecalis could be identified by using a novel immune-screening technique CMAT and an experimental animal model of endodontic infection. Detailed analysis of these IVI genes will lead to a better understanding of the molecular mechanisms involved in the endodontic infection of E. faecalis.

Gonadotropins and Nitric Oxide Can Suppress the Expression of Mouse Follicular Bad and Bax Genes (생식소 자극 호르몬과 NO에 의한 생쥐 여포의 Bad와 Bax 유전자 조절)

  • 김외리
    • Development and Reproduction
    • /
    • v.1 no.2
    • /
    • pp.165-172
    • /
    • 1997
  • the pupose of this study was to investigate the effects of gonadotropin and nitric oxide (NO) on the expression of mouse follicular bad and bax genes that are known induce apoptosis. Large and midium size follicles of immature mice were obtained at 0, 24, and 48 hours time intervals after Pregnant Mare's Serum gonadotropins(PMSG, 5 I.U.) injection. Preovulatory follicles collected at 24 hrs after PMSG injection were cultured with or without various chemicals such as gonadotropin, gonadotropin Releasing hormone(GnRH), testosterone, Sodium nitroprusside (SNP) for 24 hrs at $37^{\circ}C$. After 24 hrs culture, the culture media was used for nitrite assay and total RNA was extracted, subjected to RT-PCT for the analyses of bad and bax expression. We found that expression of bad and bax genes in follicles was markedly reduced before and after in vivo priming with hCG. When the preovulatory follicles were cultured for 24 hrs in culture media with PMSG and hCG, the expression of bad and bax genes was decreased. Moreover, SNP (NO generating agent) can significantly suppress the expression of bad and bax genes in follicles when apoptosis was induced by GnRH agonist and testosterone. At the same time, nitrite production of culture media was increased in GnRH agonist + SNP, testosterone + SNP and SNP treated groups than control group. These data demonstrated for the first time that peptide hormones and NO may play important roles in the regulation of mouse follicular differentiation and may prevent apoptosis via supressing the expression of bad and bax genes.

  • PDF

Ginseng seed oil ameliorates hepatic lipid accumulation in vitro and in vivo

  • Kim, Go Woon;Jo, Hee Kyung;Chung, Sung Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.419-428
    • /
    • 2018
  • Background: Despite the large number of studies on ginseng, pharmacological activities of ginseng seed oil (GSO) have not been established. GSO is rich in unsaturated fatty acids, mostly oleic and linoleic acids. Unsaturated fatty acids are known to exert a therapeutic effect in nonalcoholic fatty liver disease (NAFLD). In this study, we investigated the protective effect and underlying mechanisms of GSO against NAFLD using in vitro and in vivo models. Methods: In vitro lipid accumulation was induced by free fatty acid mixture in HepG2 cells and by 3 wk of high fat diet (HFD)-feeding in Sprague-Dawley rats prior to hepatocyte isolation. The effects of GSO against diet-induced hepatic steatosis were further examined in C57BL/6J mice fed a HFD for 12 wk. Results: Oil Red O staining and intracellular triglyceride levels showed marked accumulation of lipid droplets in both HepG2 cells and rat hepatocytes, and these were attenuated by GSO treatment. In HFD-fed mice, GSO improved HFD-induced dyslipidemia and hepatic insulin resistance. Increased hepatic lipid contents were observed in HFD-fed mice and it was lowered in GSO (500 mg/kg)-treated mice by 26.4% which was evident in histological analysis. Pathway analysis of hepatic global gene expression indicated that GSO increased the expression of genes associated with ${\beta}$-oxidation (Ppara, Ppargc1a, Sirt1, and Cpt1a) and decreased the expression of lipogenic genes (Srebf1 and Mlxipl), and these were confirmed with reverse transcription and quantitative polymerase-chain reaction. Conclusion: These findings suggest that GSO has a beneficial effect on NAFLD through the suppression of lipogenesis and stimulation of fatty acid degradation pathway.

Gene Expression Analysis from the Normal Stomach Cells Treated with a Cancer Inducer N-methyl-N'-nitro-N-nitrosoguanidine, MNNG

  • Jung, Dongju;Cho, Yoonjung;Kim, Tae Ue;Jeong, Sang-Hee
    • Biomedical Science Letters
    • /
    • v.23 no.1
    • /
    • pp.30-33
    • /
    • 2017
  • N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) is a carcinogen made of modified guanine on which alkyl group is added on 6th oxygen. It has been used for inducing different types of cancers experimentally in vivo and in vitro. Stomach cancer might be the best well established particular cancer induced with MNNG. Comparative analysis of gene expression between normal stomach cell and MNNG-treated stomach cell could give much information to understand cancer formation in stomach. To this end, normal human stomach cells HS738 were treated with DMSO or MNNG. Genetic comparison was conducted with purified RNA from the treated cells for 6 hours or 24 hours. Total 13 genes were selected based on their high induction folds and comprehensible function to cancer formation. Some of the genes were cancer-promoting whereas the others were anti-cancer genes. These results could give important information of genetic changes in stomach cells during MNNG-induced stomach cancer formation.

Expression of B Cell Activating Factor Pathway Genes in Mouse Mammary Gland

  • Choi, S.;Jung, D.J.;Bong, J.J.;Baik, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.153-159
    • /
    • 2007
  • In our previous study, overexpression of extracellular proteinase inhibitor (Expi) gene accelerated apoptosis of mammary epithelial cells, and induced expression of B cell activating factor (BAFF) gene. In this study, we found induction of BAFF-receptor (BAFF-R) gene expression in the Expi-transfected cells. A proliferation-inducing ligand (APRIL) gene is another TNF family member and the closest known relative of BAFF. We found induction of APRIL gene expression in the Expi-overexpressed apoptotic cells. NF-${\kappa}$B gene was also induced in the Expi-overexpressed cells. Expression patterns of BAFF and APRIL pathway-related genes were examined in in vivo mouse mammary gland at various reproductive stages. Expression levels of BAFF gene were very low at early pregnancy, increased from mid-pregnancy, and peaked at lactation, and thereafter decreased at involution stages of mammary gland. Expression of BAFF-R gene was highly induced in involution stages compared to lactation stages. Thus, expression patterns of BAFF-R gene were correlated to apoptotic status of mammary gland: active apoptosis of mammary epithelial cells occurs at involution stage of mammary gland. Expression levels of NF-${\kappa}$B gene were higher in involution stages compared to lactation stages. We analyzed mRNA levels of bcl-2 family genes from different stages of mammary development. Bcl-2 gene expression was relatively constant during lactation and involution stages. There was a slight increase in bcl-xL gene expression in involution stages compared to lactation state. Bax gene expression was highly induced in involution stage. Our results suggest that signaling pathways activated by both BAFF and ARRIL in mammary gland point towards NF-${\kappa}$B activation which causes upregulation of bax.

The Beneficial Effect of Avocado on Skin Inflammation in a Mouse Model of AD-like Skin Lesions

  • Myung, Noh-Yil;Kim, Su-Jin
    • Korean Journal of Plant Resources
    • /
    • v.32 no.6
    • /
    • pp.705-713
    • /
    • 2019
  • Avocado, superfood, contains a variety of essential nutrients and phytochemicals. The purpose of this study was to explore whether avocado could modulate skin inflammation in vivo. We elucidated the pharmacological effects of avocado on compound 48/80- or histamine-induced scratching behaviors and 2, 4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD)-like skin lesions in mice. Additionally, we investigated the anti-inflammatory activity of avocado and its underlying mechanism including its effect on the expression levels of inflammatory-related genes and nuclear factor-κB (NF-κB) in DNCB-induced AD-like skin lesions. The findings of this study demonstrate that avocado attenuated AD-clinical symptoms including itching, eczematous, erythema and dryness and histamine levels in mice. Moreover, avocado suppressed both inflammatory cytokines expression as well as NF-κB and caspase-1 activation in AD-like skin lesions in mice. Taken together, these results demonstrate that avocado may be a potential candidate for treating skin inflammatory diseases like AD.