• 제목/요약/키워드: in vivo imaging

검색결과 386건 처리시간 0.027초

Synchrotron X-ray 미세영상기법을 이용한 식물 목질부 내부 수액 유동의 계측 (In Vivo Visualization of Flow in Xylem Vessels of a Bamboo Leaf Using Synchrotron X-ray Micro Imaging Technique)

  • 김양민;이상준
    • 대한기계학회논문집B
    • /
    • 제27권11호
    • /
    • pp.1612-1617
    • /
    • 2003
  • Synchrotron X-ray micro imaging technique was employed to non-invasively monitor the water flow inside xylem vessels in a bamboo leaf. The phase contrast X-ray images clearly visualized plant anatomy and the rise of a water front inside the vessels. Consecutive X-ray images taken for 60 seconds revealed water rise kinetics against gravity in the xylem of a cut dry leaf taken from a bamboo tree. For the first time, traces of water rise, variation of contact angle between water and xylem wall as well as the internal structure of xylem were obtained. In xylem vessels, a repeating flow pattern has a typical flow velocity of 30.7$\mu\textrm{m}$/s and faster flow is established intermittently. It is concluded that the transmission type of X-ray micro imaging can be used as a powerful tool to investigate the ascent of sap in the xylem vessels at a resolution higher than that of MRI.

경동맥 죽상경화반의 고해상도 자기공명영상 (High-Resolusion Magnetic Resonance Imaging of Carotid Atherosclerotic Plaque)

  • 변우목;조재호
    • Journal of Yeungnam Medical Science
    • /
    • 제21권2호
    • /
    • pp.143-150
    • /
    • 2004
  • A thromboembolic stroke is believed to be precipitated by a rupture of vulnerable atheromatous plaques. Until recently the assessment of a further risk of stroke in high-risk patients in whom atherosclerosis has presented with a transient ischaemic attack (TIA), has been confined to a quantitative assessment of the luminal patency of the internal carotid artery. These traditional stratification parameters are no longer believed to be the most accurate predictors of a thrombo-embolism. This is because the process of vessel wall remodeling can maintain a luminal patency, and consequently, quite large friable plaques may remain unidentified. Accordingly, there is a need for an improved risk assessment. The fibrous cap of a vulnerable plaque is thinner, and an intraplaque hemorrhage and inflammation can occur during the development of atherosclerotic plaque. Several imaging methods for identifying vulnerable plaques have been developed. Recently, high resolution magnetic resonance (MR) imaging has emerged as an accurate non-invasive tool that can characterize the carotid plaque components in vivo. A High resolution carotid magnetic resonance is capable of distinguishing an intact, thick fibrous cap from a thin and ruptured cap in carotid plaque. In addition, a plaque MR can identify the active inflammation and detect a hemorrhage. High resolution carotid MR imaging is a valuable noninvasive method for quantifying the plaque components and identifying vulnerable plaque.

  • PDF

Large-scale Synthesis of Uniform-sized Nanoparticles for Multifunctional Medical Applications

  • Hyeon, Taeg-Hwan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.1-1
    • /
    • 2011
  • We developed a new generalized synthetic procedure, called as "heat-up process," to produce uniform-sized nanocrystals of many transition metals and oxides without a size selection process. We were able to synthesize uniform magnetite nanocrystals as much as 1 kilogram-scale from the thermolysis of Fe-oleate complex. Clever combination of different nanoscale materials will lead to the development of multifunctional nano-biomedical platforms for simultaneous targeted delivery, fast diagnosis, and efficient therapy. In this presentation, I would like to present some of our group's recent results on the designed fabrication of multifunctional nanostructured materials based on uniform-sized magnetite nanoparticles and their medical applications. Uniform ultrasmall iron oxide nanoparticles of <3 nm were synthesized by thermal decomposition of iron-oleate complex in the presence of oleyl alcohol. These ultrasmall iron oxide nanoparticles exhibited good T1 contrast effect. In in vivo T1 weighted blood pool magnetic resonance imaging (MRI), iron oxide nanoparticles showed longer circulation time than commercial gadolinium complex, enabling high resolution imaging. We used 80 nm-sized ferrimagnetic iron oxide nanocrystals for T2 MRI contrast agent for tracking transplanted pancreatic islet cells and single-cell MR imaging. We reported on the fabrication of monodisperse magnetite nanoparticles immobilized with uniform pore-sized mesoporous silica spheres for simultaneous MRI, fluorescence imaging, and drug delivery. We synthesized hollow magnetite nanocapsules and used them for both the MRI contrast agent and magnetic guided drug delivery vehicle.

  • PDF

1.0Tesla 자기공명 영상장치에서의 분광영상기법에 관한 연구 (Spectroscopic Imaging at 1.0Tesla MR Unit)

  • 이윤;류택현;오창현;안창범;이흥규;조장희
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.517-527
    • /
    • 1997
  • Magnetic Resonance Spectroscopic Imaging is a methodology combining the imaging and spectroscopy. It can provide the spectrum of each areas of image so that one can easily compare the spectrum of one position to another position of the image. In this study, we developed pulse sequence or the spectroscopic imaging method, RF wave forms or the saturation of water signal, computer simulations to validate our method, and confirmed the methodology with phantom experiment. Then we applied the spectroscopic method to human subject and identified a few important metabolites in in vivo. To develope a water saturating RF waveform, we used Shinnar-Le-Roux algorithm and obtained maximum phase RF waveform. With this RF pulse, it could suppress the water signal to 1:1000. The magnet is shimmed to under 1.0ppm with auto-shimming technique. The saturation bandwidth is 80Hz(2ppm). The water and fat seperation is 3.3ppm(about 140Hz at 1 Tesla magnet), the bandwidth is enough to resolve the difference. But we are more concerned about the narrow window in between the two peaks, in which the small quantity of metabolites reside. We performed the computer simulation and phantom experiments in 8*8 matrix form and showed good agreement in the image and spectrum. Finally we applied spectroscopic imaging to the brain of human subject. Only the lipid signal was shown in the periphery region which agrees with the at distribution in human head surface area. The spectrum inside the brain shows the important metabolites such as NAA, Cr/PCr, Choline. We here have shown the spectroscopic imaging which is normally done above 1.5 Tesla machine can be performed in the 1 Tesla Magnetic Resonance Imaging Unit.

  • PDF

Highly Accelerated SSFP Imaging with Controlled Aliasing in Parallel Imaging and integrated-SSFP (CAIPI-iSSFP)

  • Martin, Thomas;Wang, Yi;Rashid, Shams;Shao, Xingfeng;Moeller, Steen;Hu, Peng;Sung, Kyunghyun;Wang, Danny JJ
    • Investigative Magnetic Resonance Imaging
    • /
    • 제21권4호
    • /
    • pp.210-222
    • /
    • 2017
  • Purpose: To develop a novel combination of controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) with integrated SSFP (CAIPI-iSSFP) for accelerated SSFP imaging without banding artifacts at 3T. Materials and Methods: CAIPI-iSSFP was developed by adding a dephasing gradient to the balanced SSFP (bSSFP) pulse sequence with a gradient area that results in $2{\pi}$ dephasing across a single pixel. Extended phase graph (EPG) simulations were performed to show the signal behaviors of iSSFP, bSSFP, and RF-spoiled gradient echo (SPGR) sequences. In vivo experiments were performed for brain and abdominal imaging at 3T with simultaneous multi-slice (SMS) acceleration factors of 2, 3 and 4 with CAIPI-iSSFP and CAIPI-bSSFP. The image quality was evaluated by measuring the relative contrast-to-noise ratio (CNR) and by qualitatively assessing banding artifact removal in the brain. Results: Banding artifacts were removed using CAIPI-iSSFP compared to CAIPI-bSSFP up to an SMS factor of 4 and 3 on brain and liver imaging, respectively. The relative CNRs between gray and white matter were on average 18% lower in CAIPI-iSSFP compared to that of CAIPI-bSSFP. Conclusion: This study demonstrated that CAIPI-iSSFP provides up to a factor of four acceleration, while minimizing the banding artifacts with up to a 20% decrease in the relative CNR.

실험동물용 가시광선/근적외선 생체 이미징 소형 장비의 개발 (Development of Small System for Mobile-Based Visible/NIR Animal Imaging)

  • 엄년식;박희준;정진용;한정현;김형경;장은윤;이석재;강병호;강신원
    • 센서학회지
    • /
    • 제21권4호
    • /
    • pp.270-275
    • /
    • 2012
  • In this study, we have developed a mobile-based visible/NIR(Near InfraRed) imaging equipment for the animal testing. This equipment can provide visible, NIR and merged image through the viewer program. Especially, merged image help researcher to understand visual messages at animal in-vivo test. Also, it is available to send real-time images through the smart phone. Researcher can communicate with another researcher who is a long distance away. Also, the equipment was made with portable small size to enable it to commercialize.

Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors

  • Oh, Jihae;Lee, Chiwoo;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권4호
    • /
    • pp.237-249
    • /
    • 2019
  • Confirming the direct link between neural circuit activity and animal behavior has been a principal aim of neuroscience. The genetically encoded calcium indicator (GECI), which binds to calcium ions and emits fluorescence visualizing intracellular calcium concentration, enables detection of in vivo neuronal firing activity. Various GECIs have been developed and can be chosen for diverse purposes. These GECI-based signals can be acquired by several tools including two-photon microscopy and microendoscopy for precise or wide imaging at cellular to synaptic levels. In addition, the images from GECI signals can be analyzed with open source codes including constrained non-negative matrix factorization for endoscopy data (CNMF_E) and miniscope 1-photon-based calcium imaging signal extraction pipeline (MIN1PIPE), and considering parameters of the imaged brain regions (e.g., diameter or shape of soma or the resolution of recorded images), the real-time activity of each cell can be acquired and linked with animal behaviors. As a result, GECI signal analysis can be a powerful tool for revealing the functions of neuronal circuits related to specific behaviors.

Effects of Surface Charges on the Retention of Placenta-loaded Liposome Formulations Administered by Intramuscular Route

  • Noh, Sang-Myoung;Park, Da-Eui;Kim, Young-Bong;Oh, Yu-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • 제39권5호
    • /
    • pp.333-337
    • /
    • 2009
  • We aimed to optimize the formulation of porcine placental extract (PPE)-loaded liposomes for intramuscular administration and to investigate the effect of surface charges on the muscular retention in mice. PPE-loaded liposomes were formulated to have neutral, anionic, or cationic surface charges. The in vitro release profiles were studied by spectrofluorometry. In vivo distribution patterns at mice were studied using molecular imaging technology. Among the three types of liposomes, 1,2-dioleoyl-3-trimethylammonium-propane and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-based cationic liposomes showed the most prolonged in vitro release profile. Consistent with the in vitro results, the in vivo distribution study revealed that the cationic liposomes were retained at the site of administration for the longest period. Our results suggest the potential of cationic PPE-loaded liposomes for sustained release of the components after intramuscular administration.

Toxicity and Biomedical Imaging of Fluorescence-Conjugated Nanoparticles in Hematopoietic Progenitor Cells

  • Min, Gye-Sik;Kim, Dong-Ku
    • Reproductive and Developmental Biology
    • /
    • 제35권4호
    • /
    • pp.503-510
    • /
    • 2011
  • Cellular uptake of nanoparticles for stem cell labeling and tracking is a critical technique for biomedical therapeutic applications. However, current techniques suffer from low intracellular labeling efficiency and cytotoxic effects, which has led to great interest in the development of a new labeling strategy. Using silica-coated nanoparticles conjugated with rhodamine B isothiocyanate (RITC) (SR), we tested the cellular uptake efficiency, biocompatibility, proliferation or differentiation ability with murine bone marrow derived hematopoietic stem/progenitor cells. The bone marrow hematopoietic cells showed efficient uptake with SR with dose or time dependent manner and also provided a higher uptake on hematopoietic stem/progenitor cells. Biocompatibility tests revealed that the SR had no deleterious effects on cell cytotoxicity, proliferation, or multi-differentiation capacities in vitro and in vivo. SR nanoparticles are advantageous over traditional labeling techniques as they possess a high level of cellular internalization without limiting the biofunctionality of the cells. Therefore, SR provides a useful alternative for gene or drug delivery into hematopoietic stem/progenitor cells for basic research and clinical applications.

소동물 발광영상 측정을 위한 광학분자영상기기의 개발 (Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals)

  • 이병일;김현식;정혜진;이형재;문성민;권성영;최은서;정신영;범희승;민정준
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제43권4호
    • /
    • pp.344-351
    • /
    • 2009
  • 목적: 광학영상기술은 소동물이나 임상연구에서 분자영상법으로 알려진 첨단연구 분야이다. 광학영상기기는 소동물영상연구 및 추적연구에 중요한 역할을 수행하고 있다. 발광영상에서 소동물을 영상화 하기 위해서는 피부조직을 뚫고 나오는 광자를 검출하기 위한 고민감도 CCD카메라가 필요하다. 이 연구에서는 소동물에서 발생하는 발광신호를 검출하기 위해 개발한 광학영상기기를 소개하고자 한다. 대상 및 방법: 냉각형 CCD카메라와 집광렌즈, 8개의 백색광 LED광원을 암실상자 안에 장치하였다. 팬텀 및 튜브를 이용한 영상을 얻은 후 발광 박테리아를 이용하여 CT26 암모델 누드마우스에서 영상을 획득하였다. 결과: 발광영상을 얻기 위한 광학영상기기를 설계하고 개발하였다. 영상획득이 성공적으로 수행되었고, 시스템을 완성하였다. 개발된 장비는 분자영상연구에 사용되고 있다. 결론 개발된 광학영상장비는 다양한 실험적 조건을 만족하는 연구에 최적화하여 유용한 도구로 자리잡을 것으로 기대한다.