• Title/Summary/Keyword: in vivo expression study

Search Result 959, Processing Time 0.032 seconds

One-Step Selection of Artificial Transcription Factors Using an In Vivo Screening System

  • Bae, Kwang-Hee;Kim, Jin-Soo
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.376-380
    • /
    • 2006
  • Gene expression is regulated in large part at the level of transcription under the control of sequence-specific transcriptional regulatory proteins. Therefore, the ability to affect gene expression at will using sequencespecific artificial transcription factors would provide researchers with a powerful tool for biotechnology research and drug discovery. Previously, we isolated 56 novel sequence-specific DNA-binding domains from the human genome by in vivo selection. We hypothesized that these domains might be more useful for regulating gene expression in higher eukaryotic cells than those selected in vitro using phage display. However, an unpredictable factor, termed the "context effect", is associated with the construction of novel zinc finger transcription factors--- DNA-binding proteins that bind specifically to 9-base pair target sequences. In this study, we directly selected active artificial zinc finger proteins from a zinc finger protein library. Direct in vivo selection of constituents of a zinc finger protein library may be an efficient method for isolating multi-finger DNA binding proteins while avoiding the context effect.

Adaptive Transition of Aquaporin 5 Expression and Localization during Preimplantation Embryo Development by In Vitro Culture

  • Park, Jae-Won;Shin, Yun Kyung;Choen, Yong-Pil
    • Development and Reproduction
    • /
    • v.18 no.3
    • /
    • pp.153-160
    • /
    • 2014
  • Adaptive development of early stage embryo is well established and recently it is explored that the mammalian embryos also have adaptive ability to the stressful environment. However, the mechanisms are largely unknown. In this study, to evaluate the possible role of aquaporin in early embryo developmental adaptation, the expression of aquaporin (AQP) 5 gene which is detected during early development were examined by the environmental condition. To compare expression patterns between in vivo and in vitro, we conducted quantitative RT-PCR and analyzed localization of the AQP5 by whole mount immunofluorescence. At in vivo condition, Aqp5 expressed in oocyte and in all the stages of preimplantation embryo. It showed peak at 2-cell stage and decreased continuously until morula stage. At in vitro condition, Aqp5 expression pattern was similar with in vivo embryos. It expressed both at embryonic genome activation phase and second mid-preimplantation gene activation phase, but the fold changes were modified between in vivo embryos and in vitro embryos. During in vivo development, AQP5 was mainly localized in apical membrane of blastomeres of 4-cell and 8-cell stage embryos, and then it was localized in cytoplasm. However, the main localization area of AQP5 was dramatically shifted after 8-cell stage from cytoplasm to nucleus by in vitro development. Those results explore the modification of Aqp5 expression levels and location of its final products by in vitro culture. It suggests that expression of Aqp5 and the roles of AQP5 in homeostasis can be modulated by in vitro culture, and that early stage embryos can develop successfully by themselves adapting to their condition through modulation of the specific gene expression and localization.

Novel Vectors for the Convenient Cloning and Expression of In Vivo Biotinylated Proteins in Escherichia coli

  • Cho, Eun-Wie;Park, Jung-Hyun;Na, Shin-Young;Kim, Kil-Lyong
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.497-501
    • /
    • 1999
  • Biotinylation of recombinant proteins is a powerful tool for the detection and analysis of proteins of interest in a large variety of assay systems. The recent development of in vivo biotinylation techniques in E. coli has opened new possibilities for the production of site-specifically biotinylated proteins without the need for further manipulation after the isolation of the recombinantly expressed proteins. In the present study, a novel vector set was generated which allows the convenient cloning and expression of proteins of interest fused with an N-terminal in vivo biotinylated thioredoxin (TRX) protein. These vectors were derived from the previously reported pBIOTRX vector into which was incorporated part of the pBluescript II+phagemid multiple cloning site (MCS), amplified by PCR using a pair of sophisticated oligonucleotide primers. The functionality of these novel vectors was examined in this system by recombinant expression of rat transforming growth factor-$\beta$. Western-blot analysis using TRX-specific antibodies or peroxidase-conjugated streptavidin confirmed the successful induction of the fusion protein and the in vivo conjugation of biotin molecules, respectively. The convenience of molecular subcloning provided by the MCS and the effective in vivo biotinylation of proteins of interest makes this novel vector set an interesting alternative for the production of biotinylated proteins.

  • PDF

In Vivo Expression Technology (IVET) and Its Application in Plant-Associated Bacteria

  • Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.18 no.2
    • /
    • pp.57-62
    • /
    • 2002
  • In vivo expression technology (IVET) has been developed to study bacterial gene expression in Salmonella typhimurium during host infection. The expression of selected genes by IVET has been elevated in vivo but not in vitro. The selected genes turned out to be important for bacterial virulence and/or pathogenicity. IVET depends on a synthetic operon with a promoterless transcriptional fusion between a selection marker gene and a reporter gene. The IVET approach has been successfully adapted in other bacterial pathogens and plant-associated bacteria using different selection markers. Pseudomonas putida suppresses citrus root rot caused by Phytophthora parasitica and enhances citrus seedling growth. The WET strategy was adapted based on a transcriptional fusion, pyrBC'-lacZ, in P. putida to study the bacterial traits important far biocontrol activities. Several genes appeared to be induced on P. parasitica hyphae and were found to be related with metabolism and regulation of gene expression. It is likely that the biocontrol strain took a metabolic advantage from the plant pathogenic fungus and then suppressed citrus root rot effectively. The result was parallel with those from the adaptation of IVET in P. fluorescens, a plant growth promoting rhizobacteria (PGPR). Interestingly, genes encoding components for type III secretion system have been identified as rhizosphere-induced genes in the PGPR strain. The type III secretion system may play a certain role during interaction with its counterpart plants. Application of IVET has been demonstrated in a wide range of bacteria. It is an important strategy to genetically understand complicated bacterial traits in the environment.

Toll-like Receptor 5 Agonist Inhibition of Growth of A549 Lung Cancer Cells in Vivo in a Myd88 Dependent Manner

  • Zhou, Shi-Xiang;Li, Feng-Sheng;Qiao, Yu-Lei;Zhang, Xue-Qing;Wang, Zhi-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2807-2812
    • /
    • 2012
  • The purpose of this study was to examine the effect of a Toll-like receptor 5 (TLR5) agonist, CBLB502, on the growth and radiosensitivity of A549 lung cancer cells in vivo. Expression of myeloid differentiation factor 88 (MyD88) or TLR5 was stably knocked down in human lung cancer cells (A549) using lentivirus expressing short hairpin RNA targeting human MyD88 or TLR5. Lack of MyD88 or TLR5 expression enhanced tumor growth in mouse xenografts of A549 lung cancer cells. CBLB502 inhibited the growth of A549 lung cancer cells, not A549-MyD88-KD cells in vivo in the murine xenograft model. Our results showed that the inhibition of A549 by CBLB502 in vivo was realized through regulating the expression of neutrophil recruiting cytokines and neutrophil infiltration. Finally, we found that activation of TLR5 signaling did not affect the radiosensitivity of tumors in vivo.

Effect of Pedunculagin on IL-1$\beta$ mRNA Expression in Langerhans cells (랑게르한스세포에서 IL-1$\beta$ mRNA 발현에 대한 Pedunculagin의 효과)

  • 주성수;권희승;강희철;이도익
    • YAKHAK HOEJI
    • /
    • v.46 no.6
    • /
    • pp.472-476
    • /
    • 2002
  • Contact hypersensitivity (CHS) serves as a good model of cell-mediated reaction. Epidermal langerhans cell (LC) are thought to playa crucial role in the regulation of immune reaction of the skin, which elicit the CHS response by presenting Antigen to trafficking Ag-specific T cells within the skin. However, contact hypersensitivity is regarded as a negative side of immunities, caused by increased damaging immune response. Therefore, the study of effector molecule causing immune suppression is thought to be meaningful in the skin immune response. For this aim, this study investigated the influence of pedunculagin on cytokine, IL-$\beta$ expression from langerhans cell (LC). In vitro and in vivo, pedunculagin up-regulated the expression of IL-1$\beta$ mRNA. After PMA stimulation in vitro and DNFB sensitization in vivo, the expression of IL-1$\beta$ mRNA was down-regulated. This results suggested that pedunculagin could be immuno-modulator in skin immune system by modulating IL-1$\beta$ expression.

Effect of Osmolarity of Culture Medium on Imprinting and Apoptotic Gene Expression in Miniature Pig Nuclear Transfer Embryos

  • Park, Mi-Rung;Hwang, In-Sun;Shim, Joo-Hyun;Moon, Hyo-Jin;Kim, Dong-Hoon;Ko, Yeoung-Kyu;Seong, Hwan-Hoo;Im, Gi-Sun
    • Reproductive and Developmental Biology
    • /
    • v.32 no.3
    • /
    • pp.183-191
    • /
    • 2008
  • This study was conducted to investigate the development and gene expression in miniature pig nuclear transfer (mNT) embryos produced under different osmolarity culture conditions. Control group of mNT embryos was cultured in PZM-3 for 6 days. Treatment group of mNT embryos was cultured in modified PZM-3 with NaCl (mPZM-3, 320 mOsmol) for 2 days, and then cultured in PZM-3 (270 mOsmol) for 4 days. Blastocyst formation rate of the treatment group was significantly higher than the control and the apoptosis rate was significantly lower in treatment group. Bax-$\alpha$ and caspase-3 mRNA expression were significantly higher in the control than the treatment group. Also, the majority of imprinting genes were expressed aberrantly in in vitro produced mNT blastocysts compared to in vivo derived blastocyst H19 and Xist mRNA expression were significantly lower in the control than the treatment group or in vivo. IGF2 mRNA expression was significantly higher in the control than the treatment group or in vivo. IGF2r mRNA expression was significantly lower in the control. Methylation profiles of individual DNA strands in H19 upstream T-DMR sequences showed a similar methylation status between treatment group and in vivo. These results indicate that the modification of osmolarity in culture medium at early culture stage could provide more beneficial culture environments for mNT embryos.

Sanghuangporus sanghuang extract inhibits the proliferation and invasion of lung cancer cells in vitro and in vivo

  • Weike Wang;Jiling Song;Na Lu;Jing Yan;Guanping Chen
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1070-1083
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Sanghuangporus sanghuang (SS) has various medicinal effects, including anti-inflammation and anticancer activities. Despite the extensive research on SS, its molecular mechanisms of action on lung cancer are unclear. This study examined the impact of an SS alcohol extract (SAE) on lung cancer using in vitro and in vivo models. MATERIALS/METHODS: Different concentrations of SAE were used to culture lung cancer cells (A549 and H1650). A cell counting kit-8 assay was used to detect the survival ability of A549 and H1650 cells. A scratch assay and transwell cell invasion assay were used to detect the migration rate and invasive ability of SAE. Western blot analysis was used to detect the expression of B-cell lymphoma-2 (Bcl-2), Bcl2-associated X (Bax), cyclin D1, cyclin-dependent kinases 4 (CDK4), signal transducer and activator of transcription 3 (STAT3), and phosphorylated STAT3 (p-STAT3). Lung cancer xenograft mice were used to detect the inhibiting ability of SAE in vivo. Hematoxylin and eosin staining and immunohistochemistry were used to detect the effect of SAE on the structural changes to the tumor and the expression of Bcl-2, Bax, cyclin D1, CDK4, STAT3, and p-STAT3 in lung cancer xenograft mice. RESULTS: SAE could inhibit lung cancer proliferation significantly in vitro and in vivo without cytotoxicity. SAE suppressed the viability, migration, and invasion of lung cancer cells in a dose and time-dependent manner. The SAE treatment significantly decreased the proapoptotic Bcl-2/Bax ratio and the expression of pro-proliferative proteins Cyclin D1 and CDK4 in vitro and in vivo. Furthermore, SAE also inhibited STAT3 expression. CONCLUSIONS: SAE reduced the cell viability and suppressed cell migration and invasion in human lung cancer cells. Moreover, SAE also exhibited anti-proliferation effects in vivo. Therefore, SAE may have benefits in cancer therapy.

Skin Wound Healing Effects and Action Mechanism of Acai Berry Water Extracts

  • Kang, Mi Hyun;Choi, Seunghye;Kim, Bae-Hwan
    • Toxicological Research
    • /
    • v.33 no.2
    • /
    • pp.149-156
    • /
    • 2017
  • The purpose of this study was to investigate the wound healing effect of acai berry water extracts (ABWE) and a possible underlying mechanism involved in its action using various in vitro and in vivo models. The wound healing effect of ABWE was evaluated by migration assay using HS68 fibroblast cells. In addition, its effect on mRNA expression of procollagen, fibronectin, and MMP-1 was determined. Moreover, the wound healing effect of ABWE was evaluated in in vivo wound models through macroscopic and microscopic observation. In addition, mRNA expression levels of wound related genes were determined. Results revealed that ABWE was not cytotoxic. It increased migration of HS68 fibroblast cells. ABWE increased mRNA expression levels of fibronectin but decreased the mRNA expression levels of MMP-1. ABWE also showed significantly potent wound healing effect in vivo based on macroscopic and histopathological observation and mRNA expression evaluation for wound related genes. Taken together, our results indicated that ABWE might have potential as a wound healing agent.

Effects of Haengso-tang and Chwiyeon-tang on Expression of Respiratory Mucin Gene and Secretion of Airway Mucus (행소탕(杏蘇湯) 및 취연탕(取淵湯)이 호흡기 뮤신 유전자의 발현과 점액분비에 미치는 영향)

  • Kang, Won-Je;Seo, Un-Kyo
    • The Journal of Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.76-87
    • /
    • 2008
  • Objectives: In this study, the author investigated whether Haengso-tang (HST) and Chwiyeon-tang (CHT) affect both in vitro mucin secretion and MUC5AC gene expression in airway epithelial cells and in vivo mucin secretion from animal model for airway mucus hypersecretion. Materials and Methods: Confluent HTSE cells (non-labeled) were chased for 30 min in the presence of HST and CHT to assess the effects of the agents on mucin secretion by enzyme-linked immunosorbent assay (ELISA), with removal of oriental herbal medicine extract from each agent-treated sample by centrifuge microfilter. Also, the effects of the agents on TNF- or EGF-induced MUC5AC gene expression in human airway epithelial cells (NCI-H292) were investigated. The author also induced hypersecretion of airway mucus by exposure of rats to SO2 for 3 weeks. Effects of orally-administered HST and CHT during 1 week on in vivo mucin secretion from tracheal goblet cells of rats were assessed using ELISA. Results: (1) HST significantly decreased in vitro mucin secretion from cultured HTSE cells. However, CHT did not affect in vitro mucin secretion from HTSE cells; (2) CHT significantly inhibited the expression levels of EGF- or TNF-alpha-induced MUC5AC gene in NCI-H292 cells. However, HST did not affect the expression levels of EGF- or TNF-alpha-induced MUC5AC gene in NCI-H292 cells; (3) CHT significantly inhibited hypersecretion of in vivo mucin. However, HST did not affect hypersecretion of in vivo mucin. Conclusion: These results suggest that CHT can not only affect the secretion of mucin but also the expression of the mucin gene and could be helpful for treating pulmonary disease caused by secretion of mucin.

  • PDF