• Title/Summary/Keyword: in vitro protein digestibility

Search Result 346, Processing Time 0.028 seconds

The effect of biogas slurry application on biomass production and the silage quality of corn

  • Hua Sun;Kai Shi;Hairong Ding;Chenglong Ding;Zhiqing Yang;Chen An;Chongfu Jin;Beiyi Liu;Zhaoxin Zhong;Xia Xiao;Fuyin Hou
    • Animal Bioscience
    • /
    • v.36 no.12
    • /
    • pp.1918-1925
    • /
    • 2023
  • Objective: The objective of this study was to evaluate the effect of biogas slurry application on biomass production and the silage quality of corn. Methods: A field experiment was conducted in which corn was grown using different biogas slurry application rates. The effect of 25% to 500% biogas slurry nitrogen replacement (T1 to T14) on the yield and quality indices of corn were studied by field plot experiments. Results: The results revealed that biogas slurry application improved the stem diameter and relative feed value of corn silage in treatments T13 and T11. Moreover, the fermentation quality of corn silage was improved due to an increase in lactic acid content; in comparison with the chemical synthetic fertilizer (CF) group. The crude protein contents of corn silage had no obvious change with increasing biogas slurry application. However, the forage quality index of acid detergent fiber was decreased (p<0.05) in the T11 group compared with the CF group. In addition, higher (p<0.05) 30 h in vitro dry matter digestibility and 30 h in vitro neutral detergent fiber digestibility were observed in the T11 and T13 groups than in the CF group. Conclusion: Based on these results, it was concluded that the optimum biogas slurry application rate for corn was approximately 350% to 450% biogas slurry nitrogen replacement under the present experimental conditions.

In vitro and Lactation Responses in Mid-lactating Dairy Cows Fed Protected Amino Acids and Fat

  • Nam, I.S.;Choi, J.H.;Seo, K.M.;Ahn, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.12
    • /
    • pp.1705-1711
    • /
    • 2014
  • The objective of this study was to evaluate the effect of ruminally protected amino acids (RPAAs) and ruminally protected fat (RPF) supplementation on ruminal fermentation characteristics (in vitro) and milk yield and milk composition (in vivo). Fourteen mid-lactating Holstein dairy cows (mean weight $653{\pm}62.59kg$) were divided into two groups according to mean milk yield and number of days of postpartum. The cows were then fed a basal diet during adaptation (2 wk) and experimental diets during the treatment period (6 wk). Dietary treatments were i) a basal diet (control) and ii) basal diet containing 50 g of RPAAs (lysine and methionine, 3:1 ratio) and 50 g of RPF. In rumen fermentation trail (in vitro), RPAAs and RPF supplementation had no influence on the ruminal pH, dry matter digestibility, total volatile fatty acid production and ammonia-N concentration. In feeding trial (in vivo), milk yield (p<0.001), 4% fat corrected milk (p<0.05), milk fat (p<0.05), milk protein (p<0.001), and milk urea nitrogen (p<0.05) were greater in cows fed RPAAs and RPF than the corresponding values in the control group. With an index against as 0%, the rates of decrease in milk yield and milk protein were lower in RPAAs and RPF treated diet than those of basal diet group (p<0.05). In conclusion, diet supplemented with RPAAs and RPF can improve milk yield and milk composition without negatively affecting ruminal functions in Holstein dairy cows at mid-lactating.

Comparative Rumen Degradability of Some Legume Forages between Wet and Dry Season in West Sumatra, Indonesia

  • Evitayani, Evitayani;Warly, L.;Fariani, A.;Ichinohe, T.;Abdulrazak, S.A.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.8
    • /
    • pp.1107-1111
    • /
    • 2004
  • An experiment was conducted to evaluate the potential nutritive value of five legume forages (leaves and twigs) in West Sumatra during wet and dry seasons. The chemical composition, in vitro dry matter (IVDMD), organic matter (IVOMD) and crude protein digestibility (IVCPD), in vitro gas characteristics and estimated metabolizable energy (ME) showed variation among legume forages and between different seasons. Crude protein (CP) ranged from 14.2 to 27.8% DM in the wet season, with a significant (p<0.05) reduction in dry season. C. pubescens, G. maculata, L. leucocephala and P. phaseloides showed the least reduction in CP content. The NDF, ADF and lignin were about 39.0, 26.5 and 6.1% DM, respectively in the wet season, and significantly (p<0.05) increased in the dry season, except for NDF of C. mucunoides and C. pubescens. For IVDMD, IVOMD and IVCPD significantly increased in the wet season, but values remained as high as over 50.0% of DM. The in vitro gas characteristics and metabolizable energy were significantly (p<0.05) higher in wet season than the dry season. During both seasons, the rate of constant (c) for G. maculata and ME content for C. pubescens and P. phaseloides were not significantly (p<0.05). Results demonstrated that P. phaseloides and L. leucocephala have a good nutritive value during both wet and dry seasons. Further studies on feeding trials are needed to quantify the animal responses when offered these legume forages.

A Study on the Thermal Treatment Conditions of Retort Pouched Fried Fish Meat Paste 1. Influence of Thermal Treatment Conditions on Quality (레토르트파우치 튀김어묵의 열처리조건에 관한 연구 1. 열처리조건이 품질에 미치는 영향)

  • HA Jin-Hwan;LEE Eung-Ho;KIM Jin-Soo;JI Seung-Gil;KOO Jae-Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.6
    • /
    • pp.573-581
    • /
    • 1987
  • The fish meat paste products are rapidly growing in its production. However, the recent prohibition of AF-2 gives a lot of difficulties in the marketing of fish meat paste products manufactured ty the conventional procedures. The present study aims to obtain the optimal conditions for retaining tile quality of the fish meat paste products with long shelf-life on the market. The fried fish meat paste was sealed in the retort pouches and sterilized under the conditions which the Fo value designated to 6. The effects of the sterilization temperature and the diameter of the products on the quality factors such as jelly strength, water holding capacity, texture and in vitro protein digestibility were investigated. The jelly strength and hardness increased as the sterilization temperature increased. On the other hand, there were no differences found in water holding capacity and elasticity. Of the samples, product with diameter of 12mm showed the highest values of jelly strength, hardness, L values and in vitro protein digestibility which sterilized at $124^{\circ}C$. However. tile results of the organoleptic tests showed rather score in the products with diameter of 16 mm than 12 mm which were sterilized at $124^{\circ}C $. From the results described above, it was concluded that the fried fish meat paste products with 16 mm or less in a diameter which were sterilized at higher temperature could keep high quality.

  • PDF

Optimizing Recipes of Korean-style Cut Noodles with Anchovy Engraulis japonicus Soup Base Residue Powder (멸치(Engraulis japonicus) 잔사 분말을 첨가한 칼국수의 최적화)

  • Lee, So-Yeon;Ryu, Hong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.5
    • /
    • pp.545-555
    • /
    • 2014
  • To develop Korean-style cut noodles with enhanced protein and calcium levels, we manipulated the ratio of dried anchovy Engraulis japonicus soup base residue powder to wheat flour, using a response surface methodology based on trained panel trials to determine the optimum ratio. Texture analysis and nutritional evaluation were also performed on cut noodles containing dried anchovy soup base residue (CNAR). Higher umami taste and springiness, and lower fishy flavor were strongly correlated with overall acceptability. The optimal CNAR formulation consisted of wheat flour (96.02 g), anchovy residue powder (2.67 g), and water (50.64 mL). CNAR had lower gumminess and adhesiveness (P<0.001), but higher springiness, cohesiveness (P<0.001), and chewiness (P<0.05), than the control (original wheat flour cut noodles). The addition of anchovy soup base residue elevated protein, lipid, and ash levels relative to the control. Color values decreased with increasing residue powder content. In vitro protein and starch digestibility of CNAR were lower than in the control (P<0.001). CNAR yielded significantly higher total free amino acid content than the control (P<0.01), leading to CNAR's improved palatability. Dried anchovy soup base residue can be used in wheat flour cut noodles to improve nutrition, sensory acceptability, and profitability.

Anti-inflammatory Effect of Natural Plant Extracts on in vitro Rumen Fermentation and Methane Emission (천연 식물 추출물의 항염 효과가 in vitro 반추위 발효성상과 메탄 생성에 미치는 영향)

  • Lee, Shin Ja;Lee, Su Kyoung;Lim, Jung Hwa;Son, Chang Jun;Lee, Sung Sill
    • Journal of agriculture & life science
    • /
    • v.51 no.4
    • /
    • pp.97-109
    • /
    • 2017
  • This study was conducted to investigate the effects of anti-inflammatory plant extracts on the in vitro rumen fermentation characteristics and methane emission. Anti-inflammatory plant extracts from Morus bombycis Koidz, Mallotus japonicus L., Morus alba L., Paulownia coreana Uyeki, Isodon japonicus Hara and Ginkgo biloba L. were used in the study. The ruminal fluid(5 mL), McDougall buffer(10 mL), timothy as a substrate(0.3 g) and each anti-inflammatory plant extract(5% of substrate) were dispensed anaerobically into 50mL serum bottle. The mixtures were incubated for 3, 9, 12, 24, 48 and 72h at $39^{\circ}C$ without shaking. Supplementation of the anti-inflammatory plant extracts did not effects characteristics(pH, digestibility of dry matter, glucose concentration, ammonia concentration, protein concentration, VFA) on rumen fermentation. Total gas was showed a different pattern depending on treatments. Carbon dioxide was significantly(p<0.05) higher in Morus alba and Isodon japonicus than in control at 48h. Methane was significantly(p<0.05) lower in treatment than in control at initial fermentation. However the more incubation time was increased, the more methane emission was higher in treatment than in control. The concentrations of polyphenol and flavonoid were higher in Ginkgo biloba. In conclusion, supplementation of the anti-inflammatory plant extracts did not effect on rumen fermentation and methane emission was decreased in initial fermentation.

Evaluation of Herbage Yield and Silage - Guality of Corn ( Suweon 19 , Kwanganok ) and Sweet Sorghum ( Ramiki sorgo , Silage sorgo ) (옥수수 ( 수원 19호 , 광안옥 ) 와 단수수 ( 라미끼솔고 , 사일리지솔고 ) 의 생산량과 Silage의 품질 평가)

  • 고영두;이호재;김재황;유성오
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.3
    • /
    • pp.265-276
    • /
    • 1997
  • This study was investigated the herbage productivity and nutrient contents of corn (Suweon 19 and Kwanganok) and sweet sorghum (Ramiki sorgo and Silage sorgo) at the stage of maturity (10-DBS, silking, milky and dough stages) to identify the utility value of sweet sorghum as a substituting crop for corn. The silage materials (dough stage) were chopped and were storaged for 90 days in polyethlene bag with O.lmm thickness. Chemical composition, nitrogen content and in vitm dry matter digestibility were evaluated. Also, daily intake and palatability were checked in the feeding trial with four male sheep in average weight about 57kg. Both fresh and dry matter yield of corn and sweet sorghum were increased as the maturity processed (P< 0.05), and sweet sorghum showed higher total yield potential than corn. Crude protein content of the cultivars was decreased as the maturity was processed (P< 0.05). Neutral detergent fiber (NDF) content of the cultivars, in general, showed highest at silking stage, followed by 10 days before silking (10-DBS), and milky and dough stages (Pi0.05) in order. Acid detergent fiber (ADF) content was increased as the maturity processed, and it showed the highest value at milk stage. However, the contents of ADF in sorghum plant was decreased during the late maturity. Crude protein content of the silage was not significantly different among cultivars used, while NDF content was highest in Ramiki sorgo, followed by Silage sorgo, Kwanganok and Suweon 19. In v i m DM digestibility of the silage was highest in Kwanganok, followed by Suweon 19, Silage sorgo and Ramiki sorgo. Total N content of the silage was highest in Ramiki sorgo, followed by Suweon 19, Silage sorgo and Kwanganok. DM intake of the silage was highest in Ramiki sorgo, followed by Suweon 19, Silage sorgo and Kwanganok and it was closely related to the palatability value.

  • PDF

Effects of Inoculant Application Level on Chemical Compositions of Fermented Chestnut Meal and Its Rumen Fermentation Indices (밤 발효사료 제조과정에서 미생물 첨가수준이 영양소 함량과 반추위 내 발효특성에 미치는 영향)

  • Kim, Dong-Hyeon;Joo, Young-Ho;Lee, Hyuk-Jun;Lee, Seong-Shin;Paradhipta, Dimas H.V.;Choi, Nag-Jin;Kim, Sam-Churl
    • Journal of Environmental Science International
    • /
    • v.27 no.5
    • /
    • pp.333-340
    • /
    • 2018
  • This study aimed to estimate the effect of inoculant application level on chemical composition and bacterial count of fermented chestnut meal (FCM), and its rumen fermentation characteristics. The inoculant contained Lactobacillus acidophilus ($1.2{\times}10^{10}cfu/g$), Bacillus subtilis ($2.1{\times}10^{10}cfu/g$), and Saccharomyces cerevisiae ($2.3{\times}10^{10}cfu/g$). The chestnut meal mixed with molasses, double distilled water, and inoculant at 1 kg, 3 g, 480 mL, and 20 mL ratio for the basal chestnut meal diet. The double distilled water from basal chestnut meal diet was substituted with bacterial inoculant at a level of 0 (Control), 20 (Medium), and 40 mL (High) in the experimental diets. The mixed experimental diets were incubated at $39^{\circ}C$ for 7, 14, and 21 days, respectively. On 7 days of FCM incubation, the contents of crude protein (CP) (quadratic, P=0.043) and neutral detergent fiber (quadratic, P=0.071) decreased by increases of inoculant application levels, whereas bacterial count (quadratic, P=0.065) and rumen $NH_3-N$ (linear, P=0.063) increased. By increases of inoculant application levels on 14 days of FCM incubation, the increases were found on dry matter (DM) (quadratic, P=0.085), CP (quadratic, P=0.059), acid detergent fiber (quadratic, P=0.056), in vitro DM digestibility (linear, P=0.002), rumen total volatile fatty acid (VFA) (linear, P=0.057), and rumen iso-butyrate (linear, P=0.054). However, the decreases were found on bacterial count (linear, P=0.002), propionate (linear, P=0.099), and butyrate (quadratic, P=0.082). On 21 days of FCM incubation, in vitro DM digestibility (linear, P=0.002) and total VFA (linear, P=0.001) increased by increases of inoculant application levels, whereas the contents of CP (quadratic, P=0.034) and neutral detergent fiber (quadratic, P=0.047) decreased. These results indicate that the FCM with a medium level of inoculant application and 14 of fermentation had beneficial effects by increasing DM digestibility and rumen total VFA content, without altering bacterial count.

Effects of the Artificial Culture Medium of Wild Ginsengs on Rumen Fermentation Characteristics In Vitro (산삼배양액 이용에 관한 반추위 미생물 대사 연구)

  • Bae, G.S.;Nam, K.P.;Kim, H.S.;Lee, S.G.;Choi, H.S.;Min, W.K.;Joo, J.W.;Maeng, W.J.;Chang, M.B.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.987-996
    • /
    • 2003
  • This study was conducted to determine the effects of the artificial culture medium of wild-ginsengs on in vitro fermentation characteristics. NH$_3$-N concentration was showed the highest in 3% WGM treatment among all treatments and control. In addition, microbial protein synthesis was significantly different in all treatments throughout the incubation time, and WGM 3% treatment was the highest at the 9 h incubation(P〈0.05). Protozoa numbers within rumen were decreased in all WGM treatments at 9 h incubation time, whereas WGM 3% treatment was always decreased throughout the incubation(P〈0.05). NDF and ADF digestibility were proportionally increased as the incubation time in both control and treatments. NDF digestibility showed no significantly difference between control and the 3% treatment, and ADF digestibility was similar in all. Total volatile fatty acid(VFA) concentrations of WGM treatments without 5% were significantly higher than control (P〈0.05). No differences were observed in total VFA, acetate, propionate and butyrate concentration among the WGM treatments. Acetate/Propionate ratio of WGM treatments was higher than control after 12 h incubation(P〈0.05). As a result of the artificial culture medium of wild-ginseng on rumen fermentation characteristics in vitro, microbial protein synthesis of WGM treatment was higher than control, and WGM 3% was the highest in all treatments(P〈0.05). The effect of saponin in artificial culture medium of wild-ginseng tended to decrease NH$_3$-N concentration, while it increases the microbial synthesis in early incubation. Therefore, artificial cultures medium of wild-ginseng can increase utilization of feed by microbial and anti-protozoal effects of saponin, which may enhance microbial synthesis capacity in early fermentation period in rumen.

How to develop strategies to use insects as animal feed: digestibility, functionality, safety, and regulation

  • Jae-Hoon, Lee;Tae-Kyung, Kim;Ji Yoon, Cha;Hae Won, Jang;Hae In, Yong;Yun-Sang, Choi
    • Journal of Animal Science and Technology
    • /
    • v.64 no.3
    • /
    • pp.409-431
    • /
    • 2022
  • Various insects have emerged as novel feed resources due to their economical, eco-friendly, and nutritive characteristics. Fish, poultry, and pigs are livestock that can feed on insects. The digestibility of insect-containing meals were presented by the species, life stage, nutritional component, and processing methods. Several studies have shown a reduced apparent digestibility coefficient (ADC) when insects were supplied as a replacement for commercial meals related to chitin. Although the expression of chitinase mRNA was present in several livestock, indigestible components in insects, such as chitin or fiber, could be a reason for the reduced ADC. However, various components can positively affect livestock health. Although the bio-functional properties of these components have been verified in vitro, they show positive health-promoting effects owing to their functional expression when directly applied to animal diets. Changes in the intestinal microbiota of animals, enhancement of immunity, and enhancement of antibacterial activity were confirmed as positive effects that can be obtained through insect diets. However, there are some issues with the safety of insects as feed. To increase the utility of insects as feed, microbial hazards, chemical hazards, and allergens should be regulated. The European Union, North America, East Asia, Australia, and Nigeria have established regulations regarding insect feed, which could enhance the utility of insects as novel feed resources for the future.