• 제목/요약/키워드: in vitro detection system

검색결과 71건 처리시간 0.035초

Optimized phos-tag mobility shift assay for the detection of protein phosphorylation in planta

  • Hussain, Shah;Nguyen, Nhan Thi;Nguyen, Xuan Canh;Lim, Chae Oh;Chung, Woo Sik
    • Journal of Plant Biotechnology
    • /
    • 제45권4호
    • /
    • pp.322-327
    • /
    • 2018
  • Post-translational modification of proteins regulates signaling cascades in eukaryotic system, including plants. Among these modifications, phosphorylation plays an important role in modulating the functional properties of proteins. Plants perceive environmental cues that directly affect the phosphorylation status of many target proteins. To determine the effect of environmentally induced phosphorylation in plants, in vivo methods must be developed. Various in vitro methods are available but, unlike in animals, there is no optimized methodology for detecting protein phosphorylation in planta. Therefore, in this study, a robust, and easy to handle Phos-Tag Mobility Shift Assay (PTMSA) is developed for the in vivo detection of protein phosphorylation in plants by empirical optimization of methods previously developed for animals. Initially, the detection of the phosphorylation status of target proteins using protocols directly adapted from animals failed. Therefore, we optimized the steps in the protocol, from protein migration to the transfer of proteins to PVDF membrane. Supplementing the electrophoresis running buffer with 5mM $NaHSO_3$ solved most of the problems in protein migration and transfer. The optimization of a fast and robust protocol that efficiently detects the phosphorylation status of plant proteins was successful. This protocol will be a valuable tool for plant scientists interested in the study of protein phosphorylation.

Fabrication of Chitosan-gold Nanocomposites Combined with Optical Fiber as SERS Substrates to Detect Dopamine Molecules

  • Lim, Jae-Wook;Kang, Ik-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.25-29
    • /
    • 2014
  • This research was aimed to fabricate an optical fiber-based SERS substrate which can detect dopamine neurotransmitters. Chitosan nanoparticles (NPs) were firstly anchored on the surface of optical fiber, and then gold layer was subsequently deposited on the anchored chitosan NPs via electroless plating method. Finally, chitosan-gold nanocomposites combined with optical fiber reacted with dopamine molecules of 100-1500 mg/day which is a standard daily dose for Parkinson's disease patients. The amplified Raman signal at $1348cm^{-1}$ obtained from optical fiber-based SERS substrate was plotted versus dopamine concentrations (1-10 mM), demonstrating an approximate linearity of Y = 303.03X + 2385.8 ($R^2$ = 0.97) with narrow margin errors. The optical fiber-based Raman system can be potentially applicable to in-vitro (or in-vivo) detection of probe molecules.

Biochemical Reactions on a Microfluidic Chip Based on a Precise Fluidic Handling Method at the Nanoliter Scale

  • Lee, Chang-Soo;Lee, Sang-Ho;Kim, Yun-Gon;Choi, Chang-Hyoung;Kim, Yong-Kweon;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권2호
    • /
    • pp.146-153
    • /
    • 2006
  • A passive microfluidic delivery system using hydrophobic valving and pneumatic control was devised for microfluidic handling on a chip. The microfluidic metering, cutting, transport, and merging of two liquids on the chip were correctly performed. The error range of the accuracy of microfluid metering was below 4% on a 20 nL scale, which showed that microfluid was easily manipulated with the desired volume on a chip. For a study of the feasibility of biochemical reactions on the chip, a single enzymatic reaction, such as ${\beta}-galactosidase$ reaction, was performed. The detection limit of the substrate, i.e. fluorescein $di-{\beta}-galactopyranoside$ (FDG) of the ${\beta}-galactosidase$ (6.7 fM), was about 76 pM. Additionally, multiple biochemical reactions such as in vitro protein synthesis of enhanced green fluorescence protein (EGFP) were successfully demonstrated at the nanoliter scale, which suggests that our microfluidic chip can be applied not only to miniaturization of various biochemical reactions, but also to development of the microfluidic biochemical reaction system requiring a precise nano-scale control.

Di(2-ethylhexyl) phthalate에 의해 유도된 DNA손상과 소핵 형성 (DNA Damage and Micronuclei Induced by Di (2-ethylhexyl) phthalate in Human Breast Carcinoma MCF-7 cells)

  • 김종원;한의식;박미선;엄미옥;김인숙;전혜승;정해관;심웅섭;오혜영
    • 한국환경성돌연변이발암원학회지
    • /
    • 제21권1호
    • /
    • pp.34-43
    • /
    • 2001
  • Di-2-ethylhexyl phthalate (DEHP) is the most commonly used phthalate ester in polyvinyl chloride formulations including food packing and storage of human blood. DEHP is a well known as non-genotoxic carcinogen and endocrine disrupting chemical (EDC). DEHP have shown all negative results in ICH-guildeline recommended standard genotoxicity test battery. In this study, to assess the clastogenic and DNA damaging effect in human-derived tissue specific cells, DEHP was treated in human derived MCE-7 cells, HepG2 cells, LNCap cells, BeWo cells, MCE-10A cells, and female peripheral blood cells using micronucleus assay and in human breast carcinoma MCF-7 cells up to $1.28$\times$10^{-2}$ M using Comet assay. The in vitro micronucleus assay is a mutagenicity test system for the detection of chemicals which induce the formation of small membrane bound DNA fragment i.e. micronuclei in the cytoplasm of interphase cells, originated from clastogenic and/or aneugenic mechanism. The single cell gel electrophoresis assay (Comet assay) is used to detect DNA strand-breaks and alkaline labile site. In our results, DEHP increased significantly and/or dose-depentently and time-dependently micronucleus frequency at the 6 and 24 hr without metabolic activation system only in MCE-7 cells. DEHP treated with 2 hrs in MCF-7 cells using Comet assay induced DNA damage dose-depentantly.

  • PDF

환경 오염물질의 진보된 독성 평가 기법 (Recent Advanced Toxicological Methods for Environmental Hazardous Chemicals)

  • 류재천;최윤정;김연정;김형태;방형애;송윤선
    • Environmental Analysis Health and Toxicology
    • /
    • 제14권1_2호
    • /
    • pp.1-12
    • /
    • 1999
  • Recently, several new methods for the detection of genetic damages in vitro and in vivo based on molecular biological techniques were introduced according to the rapid progress in toxicology combined with cellular and molecular biology. Among these methods, mouse lymphoma thymidine kanase (tk) gene forward mutation assay, single cell gel electrophoresis (comet assay) and transgenic animal and cell line model as a target gene of lac I (Big Blue) and lac Z (Muta Mouse) gene mutation are newly introduced based on molecular toxicological approaches. The mouse lymphoma tk$\^$+/-/ gene assay (MOLY) using L5178Y tk$\^$+/-/ mouse lymphoma cell line is one of the mammalian forward mutation assays, and has many advantages and more sensitive than hprt assay. The target gene of MOLY is a heterozygous tk$\^$+/-/ gene located in 11 chromosome, so it is able to detect the wide range of genetic changes like point mutation, deletion, rearrangement, and mitotic recombination within tk gene or deletion of entire chromosome 11. The comet assay is a rapid, simple, visual and sensitive technique for measuring and analysing DNA breakages in mammalian cells, Also, transgenic animal and cell line models, which have exogenous DNA incorporated into their genome, carry recoverable shuttle vector containing reporter genes to assess endogenous effects or alteration in specific genes related to disease process, are powerful tools to study the mechanism of mutation in vivo and in vitro, respectively. Also in vivo acridine orange supravital staining micronucleus assay by using mouse peripheral reticulocytes was introduced as an alternative of bone marrow micronucleus assay. In this respect, there was an International workshop on genotoxicity procedure (IWGTP) supported by OECD and EMS (Environmental Mutagen Society) at Washington D. C. in March 25-26, 1999. The objective of IWGTP is to harmonize the testing procedures internationally, and to extend to finalization of OECD guideline, and to the agreement of new guidelines under the International Conference of Harmonization (ICH) for these methods mentioned above. Therefore, we introduce and review the principle, detailed procedure, and application of MOLY, comet assay, transgenic mutagenesis assay and supravital staining micronucleus assay.

  • PDF

Evaluation of the Genetic Toxicity of Synthetic Chemicals (II), a Pyrethroid Insecticide, Fenpropathrin

  • Ryu, Jae-Chun;Kim, Kyung-Ran;Kim, Hyun-Joo;Ryu, Eun-Kyoung;Lee, Soo-Young;Jung, Sang-Oun;Youn, Ji-Youn;Kim, Min-Hee;Kwon, Oh-Seung
    • Archives of Pharmacal Research
    • /
    • 제19권4호
    • /
    • pp.251-257
    • /
    • 1996
  • The detection of many synthetic chemicals used in industry that may pose a genetic hazard in our environment is subject of great concern at present. In this respect, the genetic toxicity of fenpropathrin ((RS)-.alpha.-cyano-3-phenoxybenzyl-2,2,3,3-tetramethyl cyclopropane carboxylate, CAS No.:39514-41-8), a pyrethroid insecticide, was evaluated in bacterial gene mutation system, chromosome aberration in mammalian cell system and in vivo micronucleus assay with rodents. In bacterial gene mutation assay, no mutagenicity of fenpropathrin (62-$5000\mug/plate$) was observed in Salmonella typhimurium TA 98, 100, 1535 and 1537 both in the absence and in the presence of S-9 metabolic activaton system. In mammalian cell system using chinese hamster lung fibroblast, no clastogenicity of fenpropathrin was also observed both in the absence and in the presence of metabolic activation system in the concentration range of $7-28\mug/ml$. And also, in vivo micronucleus assay using mouse bone marrow cells, fenpropathrin also revealed no mutagenic potential in the dose range of 27-105 mg/kg body weight of fenpropathrin (i.p.). Consequently, no mutagenic potential of fenpropathrin was observed in vitro bacterial, mammalian mutagenicity systems and in vivo micronucleus assay in the dose ranges used in this experiment.

  • PDF

Optimal Conditions of Single Cell Gel Electrophoresis (Comet) Assay to detect DNA single strand breaks in Mouse Lymphoma L5178Y cells

  • Ryu, Jae-Chun;Kwon, Oh-Seung;Kim, Hyung-Tae
    • 한국환경성돌연변이발암원학회지
    • /
    • 제21권2호
    • /
    • pp.89-94
    • /
    • 2001
  • Recently, single cell gel electrophoresis, also known as comet assay, is widely used for the detection and measurement of DNA strand breaks in vitro and in vivo in many toxicological fields such as radiation exposure, human monitoring and toxicity evaluation. As well defined, comet assay is a sensitive, rapid and visual method for the detection of DNA strand breaks in individual cells. Briefly, a small number of damaged cells suspended in a thin agarose gel on a microscope slide were lysed, unwinded, electrophoresed, and stained with a fluorescent DNA binding dye. The electric current pulled the charged DNA from the nucleus such that relaxed and broken DNA fragments migrated further. The resulting images which were subsequently named for their appearance as comets, were measured to determine the extent of DNA damages. However, some variations could be occurred in procedures, laboratories's conditions and kind of cells used. Hence, to overcome and to harmonize these matters in comet assay, International Workshop on Genotoxicity Test Procedure (IWGTP) was held with several topics including comet assay at Washington D.C. on March, 1999. In spite of some consensus in procedures and conditions in IWGTP, there are some problems still remained to be solved. In this respect, we attempted to set the practical optimal conditions in the experimental procedures such as lysis, unwinding, electrophoresis and neutralization conditions and so on. First of all, we determined optimal lysis and unwinding time by using 150 $\mu$M methyl methanesulfonate (MMS) which is usually used concentration. And then, we determined optimal positive control concentrations of benzo(a)pyrene (BaP) and MMS in the presence and absence of S9 metabolic activation system, respectively.

  • PDF

Localization of Autophagosome in Porcine Follicular Cumulus-oocyte Complex

  • Lee, Seunghoon;Kim, Dong-Hoon;Im, Gi-Sun;Ock, Sun-A;Ullah, Imran;Hur, Tai-Young
    • 한국수정란이식학회지
    • /
    • 제32권3호
    • /
    • pp.105-109
    • /
    • 2017
  • Autophagy is an intracellular degradation and recycling system. Oocyte maturation is dynamic process, in which various proteins should be synthesized and degraded. In our previous study, we reported the loci of autophagosome and dynamics of autophagic activity in porcine oocytes during in vitro maturation. In this study, we verified loci of autophagosome in porcine follicular cumulus-oocyte complex by detection of microtubule-associated protein 1A/1B-light chain 3 (LC3) which is the reliable marker of autophagosome. Porcine ovary including various sizes of follicles was fixed within 1 hour after collection from slaughterhouse. After fixation, immunohistochemistry was conducted on sliced ovary tissue containing various sizes of follicles by using LC3 antibody. As a result, LC3 signal was clearly detected in both cumulus and oocytes of various sizes of follicles. We also found ring shaped signal which represent autophagosome near oocyte membrane. Most of the signals in oocytes were localized nearby cellular membrane while evenly dispersed in cumulus cells. Therefore, this result suggests that autophagy occurs in porcine COCs (cumulus-oocyte complexes) at follicular stage.

Volatile Organic Compound Specific Detection by Electrochemical Signals Using a Cell-Based Sensor

  • Chung, Sang-Gwi;Kim, Jo-Chun;Park, Chong-Ho;Ahn, Woong-Shick;Kim, Yong-Wan;Choi, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.145-152
    • /
    • 2008
  • A cell-based in vitro exposure system was developed to determine whether oxidative stress plays a role in the cytotoxic effects of volatile organic compounds (VOCs) such as benzene, toluene, xylene, and chlorobenzene, using human epithelial HeLa cells. Thin films based on cysteine-terminated synthetic oligopeptides were fabricated for immobilization of the HeLa cells on a gold (Au) substrate. In addition, an immobilized cell-based sensor was applied to the electrochemical detection of the VOCs. Layer formation and immobilization of the cells were investigated with surface plasmon resonance (SPR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The adhered living cells were exposed to VOCs; this caused a change in the SPR angle and the VOC-specific electrochemical signal. In addition, VOC toxicity was found to correlate with the degree of nitric oxide (NO) generation and EIS. The primary reason for the marked increase in impedance was the change of aqueous electrolyte composition as a result of cell responses. The p53 and NF-${\kappa}B $ downregulation were closely related to the magnitude of growth inhibition associated with increasing concentrations of each VOC. Therefore, the proposed cell immobilization method, using a self-assembly technique and VOC-specific electrochemical signals, can be applied to construct a cell microarray for onsite VOC monitoring.

환경 중 유전독성물질 검색을 위한 자주달개비 생물검정 기법의 적용연구 (Biomonitoring the Genotoxicity of Environmental Pollutants Using the Tradescantia Bioassay)

  • 신해식
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2004년도 춘계학술대회
    • /
    • pp.47-60
    • /
    • 2004
  • Higher plants can be valuable genetic assay systems for monitoring environmental pollutants and evaluating their biological toxicity. Two assays are considered ideal for in situ monitoring and testing of soil, airborne and aqueous mutagenic agents; the Tradescantia stamen hair assay for somatic cell mutations and the Tradescantia micronucleus assay for chromosome aberrations. Both assays can be used for in vivo and in vitro testing of mutagens. Since higher plant systems are now recognized as excellent indicators and have unique advantages over in situ monitoring and screening, higher plant systems could be accepted by regulatory authorities as an alternative first-tier assay system for the detection of possible genetic damages resulting from the pollutants or chemicals used and produced by industrial sectors. It has been concluded that potential mutagen and carcinogen such as the heavy metals among indoor air particulates, volatile compounds in the working places, soil, and water pollutants contribute to the overall health risk. This contribution can be considerable under certain circumstances. It is therefore important to identify the level of genotoxic activity in the environment and to relate it to the biomarkers of a health risk in humans. The results from the higher plant bioassays could make a significant contribution to assessing the risks of pollutants and protecting the public from agents that can cause mutation and/or cancer. The plant bioassays, which are relatively inexpensive and easy to handle, are recommended for the scientists who are interested in monitoring pollutants and evaluating their environmental toxicity to living organisms.

  • PDF