Browse > Article

Biochemical Reactions on a Microfluidic Chip Based on a Precise Fluidic Handling Method at the Nanoliter Scale  

Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
Lee, Sang-Ho (School of Electrical Engineering and Computer Science, Seoul National University)
Kim, Yun-Gon (School of Chemical and Biological Engineering and Institute of Molecular Biology and Genetics, Seoul National University)
Choi, Chang-Hyoung (Department of Chemical Engineering, Chungnam National University)
Kim, Yong-Kweon (School of Electrical Engineering and Computer Science, Seoul National University)
Kim, Byung-Gee (School of Chemical and Biological Engineering and Institute of Molecular Biology and Genetics, Seoul National University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.11, no.2, 2006 , pp. 146-153 More about this Journal
Abstract
A passive microfluidic delivery system using hydrophobic valving and pneumatic control was devised for microfluidic handling on a chip. The microfluidic metering, cutting, transport, and merging of two liquids on the chip were correctly performed. The error range of the accuracy of microfluid metering was below 4% on a 20 nL scale, which showed that microfluid was easily manipulated with the desired volume on a chip. For a study of the feasibility of biochemical reactions on the chip, a single enzymatic reaction, such as ${\beta}-galactosidase$ reaction, was performed. The detection limit of the substrate, i.e. fluorescein $di-{\beta}-galactopyranoside$ (FDG) of the ${\beta}-galactosidase$ (6.7 fM), was about 76 pM. Additionally, multiple biochemical reactions such as in vitro protein synthesis of enhanced green fluorescence protein (EGFP) were successfully demonstrated at the nanoliter scale, which suggests that our microfluidic chip can be applied not only to miniaturization of various biochemical reactions, but also to development of the microfluidic biochemical reaction system requiring a precise nano-scale control.
Keywords
microfluid; microfluidic handling; microfluidic chip; enzymatic reaction; in vitro protein synthesis;
Citations & Related Records

Times Cited By Web Of Science : 10  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Paik, P., V. K. Pamula, M. G. Pollack, and R. B. Fair (2003) Electrowetting-based droplet mixers for microfluidic systems. Lab Chip 3: 28-33   DOI   ScienceOn
2 Park, S. S., H. S. Joo, S. I. Cho, M. S. Kim, Y. K. Kim, and B. G. Kim (2003) Multi-step reactions on microchip platform using nitrocellulose membrane reactor. Biotechnol. Bioprocess Eng. 8: 257-262   DOI   ScienceOn
3 Ahn, J. H., C. Y. Choi, and D. M. Kim (2005) Effect of energy source on the efficiency of translational termination during cell-free protein synthesis. Biochem. Biophys. Res. Commun. 337: 325-329   DOI   ScienceOn
4 Handique, K., D. T. Burke, C. H. Mastrangelo, and M. A. Burns (2001) On-chip thermopneumatic pressure for discrete drop pumping. 73: 1831-1838   DOI   ScienceOn
5 Ocvirk, G., M. Munroe, T. Tang, R. Oleschuk, K. Westra, and D. J. Harrison (2000) Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices. Electrophoresis 21: 107-115   DOI   ScienceOn
6 Wu, C. F., H. J. Cha, G. Rao, J. J. Valdes, and W. E. Bentley (2000) A green fluorescent protein fusion strategy for monitoring the expression, cellular location, and separation of biologically active organophosphorus hydrolase. Appl. Microbiol. Biotechnol. 54: 78-83   DOI
7 Zhao, B., J. S. Moore, and D. J. Beebe (2002) Principles of surface-directed liquid flow in microfluidic channels. Anal. Chem. 74: 4259-4268   DOI   ScienceOn
8 Labrousse, H., J. L. Guesdon, J. Ragimbeau, and S. Avrameas (1982) Miniaturization of beta-galactosidase immunoassays using chromogenic and fluorogenic substrates. J. Immunol. Methods 48: 133-147   DOI   ScienceOn
9 Stiege, W. and V. A. Erdmann (1995) The potentials of the in vitro protein biosynthesis system. J. Biotechnol. 41: 81-90   DOI   ScienceOn
10 Zhao, B., J. S. Moore, and D. J. Beebe (2001) Surfacedirected liquid flow inside microchannels. 291: 1023-1026   DOI   ScienceOn
11 Cho, S. K., H. J. Moon, and C. J. Kim (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting- based actuation for digital microfluidic circuits. J. Microelectromech. Syst. 12: 70-80   DOI   ScienceOn
12 Lee, S. H., S. I. Cho, C. S. Lee, B. G. Kim, and Y. K. Kim (2005) Microfluidic chip for biochemical reaction and electrophoretic separation by quantitative volume control. Sens. Actuators B Chem. 110: 164-173   DOI   ScienceOn
13 Mrksich, M., C. S. Chen, Y. Xia, L. E. Dike, D. E. Ingber, and G. M. Whitesides (1996) Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proc. Natl. Acad. Sci. USA 93: 10775-10778
14 Li, B. M. and D. Y. Kwok (2003) A lattice Boltzmann model for electrokinetic microchannel flow of electrolyte solution in the presence of external forces with the Poisson- Boltzmann equation. Int. J. Heat Mass Tran. 46: 4235-4244   DOI   ScienceOn
15 Hong, J. W., V. Studer, G. Hang, W. F. Anderson, and S. R. Quake (2004) A nanoliter-scale nucleic acid processor with parallel architecture. Nat. Biotechnol. 22: 435-439   DOI   ScienceOn
16 Liu, J., C. Hansen, and S. R. Quake (2003) Solving the 'world-to-chip' interface problem with a microfluidic matrix. Anal. Chem. 75: 4718-23   DOI   ScienceOn
17 Kim, D. M., T. Kigawa, C. Y. Choi, and S. Yokoyama (1996) A highly efficient cell-free protein synthesis system from Escherichia coli. Eur. J. Biochem. 239: 881-886   DOI   ScienceOn
18 Srinivasan, V., V. K. Pamula, and R. B. Fair (2004) Droplet- based microfluidic lab-on-a-chip for glucose detection. Anal. Chim. Acta 507: 145-150   DOI   ScienceOn
19 Johnvesly, B., D. G. Kang, S. S. Choi, J. H. Kim, and H. J. Cha (2004) Comparative production of green fluorescent protein under co-expression of bacterial hemoglobin in Escherichia coli W3110 using different culture scales. Biotechnol. Bioprocess Eng. 9: 274-277   DOI   ScienceOn
20 Auroux, P. A., D. Iossifidis, D. R. Reyes, and A. Manz (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem. 74: 2637-2652   DOI   ScienceOn
21 Lee, S. H., C. S. Lee, B. G. Kim, and Y. K. Kim (2003) Quantitatively controlled nanoliter liquid manipulation using hydrophobic valving and control of surface wettability. J. Micromech. Microeng. 13: 89-97   DOI   ScienceOn
22 Lee, C. S., S. H. Lee, S. S. Park, Y. K. Kim, and B. G. Kim (2003) Protein patterning on silicon-based surface using background hydrophobic thin film. Biosens. Bioelectron. 18: 437-444   DOI   ScienceOn
23 Unger, M. A., H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288: 113- 116   DOI   ScienceOn
24 Terray, A., J. Oakey, and D. W. Marr (2002) Microfluidic control using colloidal devices. 296: 1841-1844   DOI   ScienceOn
25 Reyes, D. R., D. Iossifidis, P. A. Auroux, and A. Manz (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74: 2623-2636   DOI   ScienceOn
26 Gallardo, B. S., V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, and N. L. Abbott (1999) Electrochemical principles for active control of liquids on submillimeter scales. Science 283: 57-60   DOI   ScienceOn