• Title/Summary/Keyword: in vitro cancer research

Search Result 689, Processing Time 0.033 seconds

Current and Future Perspectives of Lung Organoid and Lung-on-chip in Biomedical and Pharmaceutical Applications

  • Junhyoung Lee;Jimin Park;Sanghun Kim;Esther Han;Sungho Maeng;Jiyou Han
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.339-355
    • /
    • 2024
  • The pulmonary system is a highly complex system that can only be understood by integrating its functional and structural aspects. Hence, in vivo animal models are generally used for pathological studies of pulmonary diseases and the evaluation of inhalation toxicity. However, to reduce the number of animals used in experimentation and with the consideration of animal welfare, alternative methods have been extensively developed. Notably, the Organization for Economic Co-operation and Development (OECD) and the United States Environmental Protection Agency (USEPA) have agreed to prohibit animal testing after 2030. Therefore, the latest advances in biotechnology are revolutionizing the approach to developing in vitro inhalation models. For example, lung organ-on-a-chip (OoC) and organoid models have been intensively studied alongside advancements in three-dimensional (3D) bioprinting and microfluidic systems. These modeling systems can more precisely imitate the complex biological environment compared to traditional in vivo animal experiments. This review paper addresses multiple aspects of the recent in vitro modeling systems of lung OoC and organoids. It includes discussions on the use of endothelial cells, epithelial cells, and fibroblasts composed of lung alveoli generated from pluripotent stem cells or cancer cells. Moreover, it covers lung air-liquid interface (ALI) systems, transwell membrane materials, and in silico models using artificial intelligence (AI) for the establishment and evaluation of in vitro pulmonary systems.

Effects of Lycopene on Endothelial Protein C Receptor Shedding In Vitro and In Vivo (In vitro와 in vivo에서 라이코펜이 EPCR 탈락에 미치는 영향)

  • Yoo, Hayoung;Lee, Hyun-Shik;Lee, Wonhwa;Bae, Jong-Sup
    • Journal of Life Science
    • /
    • v.23 no.5
    • /
    • pp.650-656
    • /
    • 2013
  • Endothelial protein C receptor (EPCR) plays a pivotal role in augmenting Protein C activation through the thrombin-thrombomodulin complex. EPCR activity is markedly changed by ectodomain cleavage and released as the soluble protein (sEPCR). EPCR shedding is mediated by tumor necrosis factor-${\alpha}$ converting enzyme (TACE). Lycopene found in tomatoes and tomato products has anti-oxidant, anti- cancer and anti-inflammatory effects. However, little is known about the effects of lycopene on EPCR shedding. We investigated this issue by monitoring the effects of lycopene on the phorbol-12-myristate 13-acetate (PMA), tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-$1{\beta}$ and on the cecal ligation and puncture (CLP)-mediated EPCR shedding. Data showed that lycopene potently inhibited the PMA, TNF-${\alpha}$, IL-$1{\beta}$ and CLP-induced EPCR shedding by suppressing TACE expression. Furthermore, lycopene reduced PMA-stimulated phosphorylation of p38, extracellular regulated kinases (ERK) 1/2 and c-Jun N-terminal kinase (JNK). Given these results, lycopene should be viewed as a candidate therapeutic agent for the treatment of various severe vascular inflammatory diseases via inhibition of the EPCR shedding.

Bis Is Involved in Glial Differentiation of PI9 Cells Induced by Retinoic Acid

  • Yoon, Jung-Sook;Lee, Mun-Yong;Lee, Jae-Seon;Park, Chan-Sun;Youn, Ho-Joong;Lee, Jeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.251-256
    • /
    • 2009
  • Previous observations suggest that Bis, a Bcl-2-binding protein, may playa role the neuronal and glial differentiation in vivo. To examine this further, we investigated Bis expression during the in vitro differentiation of P19 embryonic carcinoma cells induced by retinoic acid (RA). Western blotting and RT-PCR assays showed that Bis expression was temporarily decreased during the free floating stage and then began to increase on day 6 after the induction of differentiation. Double immunostaining indicated that Bis-expressing cells do not express several markers of differentiation, including NeuN, MAP-2 and Tuj-1. However, some of the Bis-expressing cells also were stained with GFAP-antibodies, indicating that Bis is involved glial differentiation. Using an shRNA strategy, we developed bis-knock down P19 cells and compared them with control P19 cells for the expression of NeuroD, Mash-1 and GFAP during RA-induced differentiation. Among these, only GFAP induction was significantly attenuated in Pl9-dnbis cells and the population showing GFAP immunoreactivity was also decreased. It is noteworthy that distribution of mature neurons and migrating neurons was disorganized, and the close association of migrating neuroblasts with astrocytes was not observed in P19-dnbis cells. These results suggest that Bis is involved in the migration-inducing activity of glial cells.

Inhibitory effect of temozolomide on apoptosis induction of cinnamaldehyde in human glioblastoma multiforme T98G cell line

  • Hedieh Abband;Sara Dabirian;Adele Jafari;Mehran Nasiri;Ebrahim Nasiri
    • Anatomy and Cell Biology
    • /
    • v.57 no.1
    • /
    • pp.85-96
    • /
    • 2024
  • Glioblastoma is the most common primary malignant brain tumor in adults. Temozolomide (TMZ) is an FDA-approved drug used to treat this type of cancer. Cinnamaldehyde (CIN) is a derivative of cinnamon extract and makes up 99% of it. The aim of this study was to investigate the in vitro combined effect of CIN and TMZ on human glioblastoma multiforme T98G cell line viability. In this study, we used 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tertazolium bromide (MTT) method to evaluate the extent of IC50, acridine orange, Giemsa and Hoechst staining to evaluate the manner of apoptosis and the Western blotting method to examine the expression change of apoptotic proteins. Our results show that TMZ has an inhibitory effect on CIN when both used in combination at concentrations of 300 and 100 µM (P<0.05) and has a cytotoxic effect when used alone at the same concentrations (P<0.05). The western blotting result showed that TMZ at concentrations of 2,000 and 1,000 µM significantly increased Bax expression and decreased Bcl2 expression (P<0.05), indicating that TMZ induced apoptosis through the mitochondrial pathway. However, CIN had no effect on Bax and Bcl2 expressions, thus causing apoptosis from another pathway. Also, the Bax:Bcl2 expression ratio at concentrations combined was lower than that for TMZ 1,000 µM and higher than that for CIN 150 and 100 µM (P<0.05), which confirms the inhibitory effect of TMZ on CIN. From the present study, we conclude that TMZ in combination with CIN has an inhibitory effect on increasing the cytotoxicity rate.

Regulation of Tumor Neceosis Factor-${\alpha}$ Receptors and Signal Transduction Pathways

  • Han, Hyung-Mee
    • Toxicological Research
    • /
    • v.8 no.2
    • /
    • pp.343-357
    • /
    • 1992
  • Tumor necrosis factor-${\alpha}$(TNF), a polypeptide hormone secreted primarily by activated macrophages, was originally identified on the basis of its ability to cause hemorrhagic necrosis and tumor regression in vivo. Subsequently, TNF has been shown to be an important component of the host responses to infection and cancer and may mediate the wasting syndrome known as cachexia. These systemic actions of TNF are reflected in its diverse effects on target cells in vitro. TNF initiates its diverse cellular actions by binding to specific cell surface receptors. Although TNF receptors have been identified on most of animal cells, regulation of these receptors and the mechanisms which transduce TNF receptor binding into cellular responses are not well understood. Therefore, in the present study, the mechanisms how TNF receptors are being regulated and how TNF receptor binding is being transduced into cellular responses were investigated in rat liver plasma membranes (PM) and ME-180 human cervical carcinoma cell lines. $^{125}I$-TNF bound to high ($K_d=1.51{\pm}0.35nM$)affinity receptors in rat liver PM. Solubilization of PM with 1% Triton X-100 increased both high affinity (from $0.33{\pm}0.04\;to\;1.67{\pm}0.05$ pmoles/mg protein) and low affinity (from $1.92{\pm}0.16\;to\;7.57{\pm}0.50$ pmoles/mg protein) TNF binding without affecting the affinities for TNF, suggesting the presence of a large latent pool of TNF receptors. Affinity labeling of receptors whether from PM or solubilized PM resulted in cross-linking of $^{125}I$-TNF into $M_r$ 130 kDa, 90 kDa and 66kDa complexes. Thus, the properties of the latent TNF receptors were similar to those initially accessible to TNF. To determine if exposure of latent receptors is regulated by TNF, $^{125}I$-TNF binding to control and TNF-pretreated membranes were assayed. Specific binding was increased by pretreatment with TNF (P<0.05), demonstrating that hepatic PM contains latent TNF receptors whose exposure is promoted by TNF. Homologous up-regulation of TNF receptors may, in part, be responsible for sustained hepatic responsiveness during chronic exposure to TNF. As a next step, the post-receptor events induced by TNF were examined. Although the signal transduction pathways for TNF have not been delineated clearly, the actions of many other hormones are mediated by the reversible phosphorylation of specific enzymes or target proteins. The present study demonstrated that TNF induces phosphorylation of 28 kDa protein (p28). Two dimensional soidum dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE) resolved the 28kDa phosphoprotein into two isoforms having pIs of 6.2 and 6.1. The pIs and relative molecular weight of p28 were consistent with those of a previously characterized mRNA cap binding protein. mRNA cap binding proteins are a class of translation initiation factors that recognize the 7-methylguanosine cap structure found on the 5' end of eukaryotic mRNAs. In vitro, these proteins are defined by their specific elution from affinity columns composed of 7-methylguanosine 5'-triphosphate($m^7$GTP)-Sepharose. Affinity purification of mRNA cap binding proteins from control and TNF treated ME-180 cells proved that TNF rapidly stimulates phosphorylation of an mRNA cap binding protein. Phosphorylation occurred in several cell types that are important in vitro models of TNF action. The mRNA cap binding protein phosphorylated in response to TNF treatment was purifice, sequenced, and identified as the proto-oncogene product eukaryotic initiation factor-4E(eIF-4E). These data show that phosphorylation of a key component of the cellular translational machinery is a common early event in the diverse cellular actions of TNF.

  • PDF

Chemopreventive Potential of Salvia miltiorrhiza Fraction Extracts (단삼 분획추출물의 암예방 효과)

  • Shon Yun-Hee;Cho Hyun-Jung;Chang Hyeun-Wook;Son Kun-Ho;Nam Kyung-Soo
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.369-374
    • /
    • 2006
  • Six fractions of Salvia miltiorrhiza were tested for their chemopreventive potentials using biochemical markers of carcinogenesis such as quinone reductase (QR), glutathione S-transferase (GST) and glutathione (GSH). Seventy percentage of EtOH extract was potent inducer of QR activity in Hepa1c1c7 murine hepatoma cells. GST activity was increased about 1.4-fold with EtOAc extract at concentration of 50 ${\mu}g/ml$. GSH levels were significantly increased with $H_2O$ extract, 70% EtOH extract and water extract at concentration of 50 ${\mu}g/ml$ (p<0.005). From these results, 70% EtOH extract (250 mg/kg) was intragastrically administered to ICR mice for 14 days. QR, GST and GSH levels were significantly increased with the 70% EtOH treatment. These studies suggest that the 70% EtOH extract of S. miltiorrhiza could be considered as a potential agent for cancer chemoprevention.

Chemicals from Cimicifuga dahurica and Their Inhibitory Effects on Pro-inflammatory Cytokine Production by LPS-stimulated Bone Marrow-derived Dendritic Cells

  • Thao, Nguyen Phuong;Lee, Young Suk;Luyen, Bui Thi Thuy;Van Oanh, Ha;Ali, Irshad;Arooj, Madeeha;Koh, Young Sang;Yang, Seo Young;Kim, Young Ho
    • Natural Product Sciences
    • /
    • v.24 no.3
    • /
    • pp.194-198
    • /
    • 2018
  • Inflammation is a biological response caused by overactivation of the immune system and is controlled by immune cells via a variety of cytokines. The overproduction of pro-inflammatory cytokines enhances abnormal host immunity, resulting in diseases such as rheumatoid arthritis, cardiovascular disease, Alzheimer's disease, and cancer. Inhibiting the production of pro-inflammatory cytokines such as interleukin (IL)-12p40, IL-6, and tumor necrosis factor $(TNF)-{\alpha}$ might be one way to treat these conditions. Here, we investigated the anti-inflammatory activity of compounds isolated from Cimicifuga dahurica (Turcz.) Maxim., which is traditionally used as an antipyretic and analgesic in Korea. In primary cell culture assays, 12 compounds were found to inhibit the production of pro-inflammatory cytokines (IL-12p40, IL-6, and $TNF-{\alpha}$) in vitro in bone marrow-derived dendritic cells stimulated with LPS.

Effects of miR-152 on Cell Growth Inhibition, Motility Suppression and Apoptosis Induction in Hepatocellular Carcinoma Cells

  • Dang, Yi-Wu;Zeng, Jing;He, Rong-Quan;Rong, Min-Hua;Luo, Dian-Zhong;Chen, Gang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4969-4976
    • /
    • 2014
  • Background: miR-152 is involved in the genesis and development of several malignancies. However, its role in HCC has not been fully clarified. The aim of this study was to investigate the clinicopathological significance of miR-152 and its effect on the malignant phenotype of HCC cells. Methods: miR-152 expression was detected using real-time quantitative RT-PCR in 89 pairs of HCC formalin-fixed paraffin-embedded and their adjacent tissues. Functionally, in vitro effects and mechanisms of action of miR-152 on proliferation, viability, caspase activity, apoptosis and motility were explored in HepG2, HepB3 and SNU449 cells, as assessed by spectrophotometry, fluorimetry, fluorescence microscopy, wound-healing and Western blotting, respectively. Results: miR-152 expression in HCC was downregulated remarkably compared to that in adjacent hepatic tissues. miR-152 levels in groups of advanced clinical stage, larger tumor size and positive HBV infection, were significantly lower than in other groups. A miR-152 mimic could suppress cell growth, inhibit cell motility and increase caspase activity and apoptosis in HCC cell lines. Furthermore, Western blotting showed that the miR-152 mimic downregulated Wnt-1, DNMT1, ERK1/2, AKT and TNFRS6B signaling. Intriguingly, inverse correlation of TNFRF6B and miR-152 expression was found in HCC and bioinformatics confirmed that TNFRF6B might be a target of miR-152. Conclusions: Underexpression of miR-152 plays a vital role in hepatocarcinogenesis and lack of miR-152 is related to the progression of HCC through deregulation of cell proliferation, motility and apoptosis. miR-152 may act as a tumor suppressor miRNA by also targeting TNFRSF6B and is therefore a potential candidate biomarker for HCC diagnosis, prognosis and molecular therapy.

Sesquiterpene Lactones: A Review of Biological Activities (세스퀴테르펜 락톤류: 생리활성 재검토)

  • Karadeniz, Fatih;Oh, Jung Hwan;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.430-441
    • /
    • 2021
  • Sesquiterpene lactones (STLs) are terpenoids found mostly in the Asteraceae family and are known for their strong cytotoxic properties, among other notable bioactivities. Some STLs, such as artemisinin and mipsagargin, are already commercially available and are used to fight malaria and tumor growth, respectively. Although the interest in STLs was low for a time after their discovery due to their toxic nature, past decades have witnessed a soar in STL-based studies focused on developing novel pharmaceuticals via chemical diversification. These studies have reported several promising physiological effects for STLs, including lower toxicity and diverse modes of action, and have demonstrated the antimicrobial, antioxidant, hepatoprotective, antiviral, antiprotozoal, phytotoxic, antitumor, and antiaging properties of STLs. STLs are mainly considered as valuable natural molecules for the fight against cancer since most STLs induce death of different types of cancer cells, as shown by in vitro and in vivo studies. Some STLs can also enhance the effects of drugs that are already in clinical use. Medicinal chemists use various STLs as starting molecules for the synthesis of new STLs or different bioactive compounds. All these developments warrant future research to provide more information on STLs, their bioactivities, and their mode of action. In this context, this review has summarized the bioactivities of some of the widely studied STLs, namely artemisinin, costunolide, thapsigargin, arglabin, parthenolide, alantolactone, cynaropicrin, helenalin, and santonin.

Gene Expression Analysis of Methotrexate-induced Hepatotoxicity between in vitro and in vivo

  • Jung, Jin-Wook;Kim, Seung-Jun;Kim, Jun-Sup;Park, Joon-Suk;Yeom, Hye-Jung;Kim, Ji-Hoon;Her, Young-Sun;Lee, Yong-Soon;Kang, Jong-Soo;Lee, Gyoung-Jae;Kim, Yang-Seok;Kang, Kyung-Sun;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.4
    • /
    • pp.256-261
    • /
    • 2005
  • The recent DNA microarray technology enables us to understand gene expression profiling in cell line and animal models. The technology has potential possibility to comprehend mechanism of multiple genes were related to compounds which have toxicity in biological system. So, microarray system has been used for the prediction of toxicity through gene expression induced by toxicants. It has been shown that compounds with similar toxic mechanisms produce similar changes in gene expression in vivo system. Here we focus on the use of toxicogenomics for the determination of gene expression analysis associated with hepatotoxicity in rat liver and cell line (WB-F344). Methotrexate (MTX) is a chemotherapy agent that has been used for many years in the treatment of cancer because it affects cells that are rapidly dividing. Also it has been known the toxicity of MTX, in a MTX abortion, it stops embryonic cells from dividing and multiplying and is a non-surgical method of ending pregnancy in its early stages. We have shown DNA microarray analyses to assess MTX-specific expression profiles in vivo and in vitro. Male Sprague-Dawely VAF+ albino rats of 5-6 weeks old and WB-F344 cell line have been treated with MTX. Total RNA was isolated from Rat liver and cell line that has treated with MTX. 4.8 K cDNA microarray in house has been used for gene expression profiling of MTX treatment. We have found quite distinct gene expression patterns induced by MTX in a cell line and in vivo system.