• 제목/요약/키워드: in vitro cancer research

Search Result 689, Processing Time 0.028 seconds

Inhibition of Cell Proliferation and Induction of Apoptosis by Diallyl Disulfide in Human Colon Cancer Cell lines (사람 대장암 세포주에서 Diallyl Disulfide의 세포증식억제 및 Apoptosis 유도 효과)

  • Kim Tae Myoung;Ryu Jae Myun;Kwon Hyun Jung;Woo Koan Sik;Jeong Heon Sang;Hong Jin Tae;Kim Dae Joong
    • Toxicological Research
    • /
    • v.21 no.4
    • /
    • pp.355-360
    • /
    • 2005
  • Epidemiological and laboratory studies provide insight into the anti-carcinogenic potential of garlic and its constituent compounds. Garlic is appealing as an anti-carcinogenic agent due to its ability to induce apoptosis in vitro. Diallyl disulfide (DADS) is one of the major components of garlic that used to determine inhibition of cell proliferation and induced apoptosis in human colon cell lines. In this study, human colorectal cancer cell lines (LOVO, HCT-116, SW-480) were exposed to DADS. The inhibitory effects of DADS dose level more than $50\;{\mu}M$ in the cell viability of all cell lines. Cell growth activity inhibits of human colon cancer cell lines. The inhibitory effects of DADS dose level more than $25\~50\;{\mu}M$ in the cell growth using MTT assay. We found that DADS may have the apoptosis action (chromatin condensation, DNA fragmentation) using DAPI staining and increased the expression of caspase-3 at the dose level more than $100\;{\mu}M$, decreased the expression level of $\beta-catenin$ at dose dependent in the western blotting. We suggest that DADS may have a potential candidate as cancer chemopreventive agents.

A novel cis/trans-diaminocyclohexane platinum coordination complexes possessing in vitro and in vivo antitumor activity

  • Jung, Jee-Chang;Chang, Sung-Goo;Lee, Kyung-Tae;Park, Young-Soo;Lee, Joo-Han;Lee, Kyou-Heung;Kim, Sang-Lin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.101-101
    • /
    • 1997
  • As part of a drug discovery program to develope more effective platinum-based anticancer drugs, a series of platinum complexes trans -diaminocyclohexane platinum bi sdiphenylphosphino -ethane (KHPC-002) cis-diaminocyclohexane platinum bisdiphenylphosphino-ethane (KHPC-006) has been evaluated in vitro against 4 human carcinoma cell lines with those of cisplatin using a tetrazolium-based colorimetric assay (MTT assay). The cell lines were two human bladder carcinoma cell lines, HT-1197 and HT-1376, human colon carcinoma cell line, HCT-116, and prostate cancer cell line DU-145.

  • PDF

Anti-cancer and -Metastatic Effects of Lactobacillus Rhamnosus GG Extract on Human Malignant Melanoma Cells, A375P and A375SM

  • Lee, Jaehoon;Park, Sangkyu;Seo, Jeongmin;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • v.42 no.3
    • /
    • pp.107-115
    • /
    • 2017
  • Human malignant melanoma is an aggressive skin cancer which has been rising at a greater rate than any other cancers. Although various new therapeutic methods have been developed in previous studies, this disease has properties of high proliferation and metastasis rate which remain obstacles that have lead to a poor prognosis in patients. It has been reported that a specific Lactobacillus extract has anti-cancer and -metastasis effect in vitro and in vivo. However, previous research has not specified precisely what effect the Lactobacillus rhamnosus GG (LGG) extract has had on human malignant melanomas. In this study, we showed that the LGG extract has anti-cancer and -metastasis effects on the human malignant melanoma cell lines, A375P and A375SM. At first, it was found that, while the LGG extract affects human neonatal dermal fibroblasts slightly, it induced the dose-dependent anti-cancer effect on A375P and A375SM by a WST-1 proliferation assay. As a result of a real-time PCR analysis, the expression patterns of several genes related to cell cycle, proliferation, and apoptosis were modulating in a manner that inhibited the growth of both malignant melanoma cell lines after the treatment of the LGG extract. Furthermore, genes related to the epithelial-mesenchymal transition were down-regulated, and migration rates were also decreased significantly by the LGG extract. Our study showed that the LGG extract could be used as a potential therapeutic source.

Inhibitory Effects of Cyrtopodion scabrum Extract on Growth of Human Breast and Colorectal Cancer Cells

  • Amiri, Ahmad;Namavari, Mehdi;Rashidi, Mojtaba;Fahmidehkar, Mohammad Ali;Seghatoleslam, Atefeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.565-570
    • /
    • 2015
  • Breast and colorectal cancers rank high in Iran as causes of mortality. Most of the current treatments are expensive and non-specific. The potential anticancer properties of common home gecko, Cyrtopodion scabrum, were investigated in this study. The effects of C. scabrum extract on proliferation, viability and migration of the colorectal cancer (SW-742), breast cancer (MCF-7) and normal (MSC) cell lines were investigated using MTT and in vitro wound healing assay. $IC_{50}$ values calculated for the extract were $559{\pm}28.9{\mu}g/mL$ for MCF-7 and $339{\pm}11.3{\mu}g/mL$ for SW-742. No toxic effects on the normal control cells were observed. MCF-7 and SW-742 cell growth was inhibited by 32.6% and 62%, under optimum conditions, compared to the untreated control cells. The extract also decreased the motility and migration ability of both cancer cell lines, with no significant effects on the normal control cells. Data suggest C. scabrum extract as a useful natural resource for targeting cancer cells specifically.

Combination Effect of Nimotuzumab with Radiation in Colorectal Cancer Cells (대장암 세포에서 EGFR 저해제 Nimotuzumab의 방사선 병합 효과)

  • Shin, Hye-Kyung;Kim, Mi-Sook;Jeong, Jae-Hoon
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.147-154
    • /
    • 2010
  • Purpose: To investigate the radiosensitizing effect of the selective epidermal growth factor receptor (EGFR) inhibitor nimotuzumab in human colorectal cancer cell lines. Materials and Methods: Four human colorectal cancer cell lines, HCT-8, LoVo, WiDr, and HCT-116 were treated with nimotuzumab and/or radiation. The effects on cell proliferation, viability, and cell cycle progression were measured by MTT, clonogenic survival assay, flow cytometry, and Western blot. Results: An immunoblot analysis revealed that EGFR phosphorylation was inhibited by nimotuzumab in colorectal cancer cell lines. Under these experimental conditions, pre-treatment with nimotuzumab increased radiosensitivity of colorectal cancer cell lines, except for cell line HCT-116. However, cell proliferation or cell cycle progression was not affected by the addition of nimotuzumab, irrespective of irradiation. Conclusion: Nimotuzumab enhanced the radiosensitivity of colorectal cancer cells in vitro by inhibiting EGFR-mediated cell survival signaling. This study provided a rationale for the clinical application of the selective EGFR inhibitor, nimotuzumab in combination with radiation in colorectal cancer cells.

An Experimental Study of Radioprotective Effect of Ginseng Alkaloid Fraction on Cellular Damage (방사선 세포 손상에 대한 인삼 Alkaloid 분획의 보호 효과에 관한 실험적 연구)

  • Yoo, Seong-Yul;Cho, Chul-Koo;Kim, Mi-Sook;Yoo, Hyung-Jun;Kim, Seong-Ho;Kim, Tae-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.3
    • /
    • pp.195-205
    • /
    • 1997
  • This paper is to assess the effect of Adaptagen as a radioprotector in which main component is alkaloid fraction of ginseng. Evaluation was made in vitro and in vivo study with NIGP(S) mouse by the measurement of regeneration of jejunal crypt cell and micronucleus assay to analyze radioprotective effect of ginseng alkaloid fraction in comparison with that of water fraction after whole body irradiation. The results were as follows, 1. The degree of radiation damage of mouse jejunal crypt cell was diminished in both of alkaloid and water fraction groups compared to control group but more in alkaloid fraction group than water fraction group. Regeneration of mouse jejunal crypt cell was higher both in alkaloid and water fraction groups than control group. 3. In vitro study, frequency of micronucleus was diminished in tendency for the treated groups than control group but statistically insignificant. 4. In vitro study, frequency of micronucleus was diminished in both alkaloid and water fraction groups compared to control group but more in alkaloid fraction group than water fraction group.

  • PDF

In-silico and structure-based assessment to evaluate pathogenicity of missense mutations associated with non-small cell lung cancer identified in the Eph-ephrin class of proteins

  • Shubhashish Chakraborty;Reshita Baruah;Neha Mishra;Ashok K Varma
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.30.1-30.13
    • /
    • 2023
  • Ephs belong to the largest family of receptor tyrosine kinase and are highly conserved both sequentially and structurally. The structural organization of Eph is similar to other receptor tyrosine kinases; constituting the extracellular ligand binding domain, a fibronectin domain followed by intracellular juxtamembrane kinase, and SAM domain. Eph binds to respective ephrin ligand, through the ligand binding domain and forms a tetrameric complex to activate the kinase domain. Eph-ephrin regulates many downstream pathways that lead to physiological events such as cell migration, proliferation, and growth. Therefore, considering the importance of Eph-ephrin class of protein in tumorigenesis, 7,620 clinically reported missense mutations belonging to the class of variables of unknown significance were retrieved from cBioPortal and evaluated for pathogenicity. Thirty-two mutations predicted to be pathogenic using SIFT, Polyphen-2, PROVEAN, SNPs&GO, PMut, iSTABLE, and PremPS in-silico tools were found located either in critical functional regions or encompassing interactions at the binding interface of Eph-ephrin. However, seven were reported in nonsmall cell lung cancer (NSCLC). Considering the relevance of receptor tyrosine kinases and Eph in NSCLC, these seven mutations were assessed for change in the folding pattern using molecular dynamic simulation. Structural alterations, stability, flexibility, compactness, and solvent-exposed area was observed in EphA3 Trp790Cys, EphA7 Leu749Phe, EphB1 Gly685Cys, EphB4 Val748Ala, and Ephrin A2 Trp112Cys. Hence, it can be concluded that the evaluated mutations have potential to alter the folding pattern and thus can be further validated by in-vitro, structural and in-vivo studies for clinical management.

Genistein Suppression of Matrix Metalloproteinase 2 (MMP-2) and Vascular Endothelial Growth Factor (VEGF) Expression in Mesenchymal Stem Cell Like Cells Isolated from High and Low Grade Gliomas

  • Yazdani, Yasaman;Rad, Mohammad Reza Sharifi;Taghipour, Mousa;Chenari, Nooshafarin;Ghaderi, Abbas;Razmkhah, Mahboobeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.12
    • /
    • pp.5303-5307
    • /
    • 2016
  • Objective: Brain tumors cause great mortality and morbidity worldwide, and success rates with surgical treatment remain very low. Several recent studies have focused on introduction of novel effective medical therapeutic approaches. Genistein is a member of the isoflavonoid family which has proved to exert anticancer effects. Here we assessed the effects of genistein on the expression of MMP-2 and VEGF in low and high grade gliomas in vitro. Materials and Methods: High and low grade glioma tumor tissue samples were obtained from a total of 16 patients, washed with PBS, cut into small pieces, digested with collagenase type I and cultured in DMEM containing 10% FBS. When cells reached passage 3, they were exposed to genistein and MMP-2 and VEGF gene transcripts were determined by quantitative real time PCR (qRT-PCR). Results: Expression of MMP-2 demonstrated 580-fold reduction in expression in low grade glioma cells post treatment with genistein compared to untreated cells (P value= 0.05). In cells derived from high grade lesions, expression of MMP-2 was 2-fold lower than in controls (P value> 0.05). Genistein caused a 4.7-fold reduction in VEGF transcript in high grade glioma cells (P value> 0.05) but no effects were evident in low grade glioma cells. Conclusion. Based on the data of the present study, low grade glioma cells appear much more sensitive to genistein and this isoflavone might offer an appropriate therapeutic intervention in these patients. Further investigation of this possibility is clearly warranted.

UHRF2 mRNA Expression is Low in Malignant Glioma but Silencing Inhibits the Growth of U251 Glioma Cells in vitro

  • Wu, Ting-Feng;Zhang, Wei;Su, Zuo-Peng;Chen, San-Song;Chen, Gui-Lin;Wei, Yong-Xin;Sun, Ting;Xie, Xue-Shun;Li, Bin;Zhou, You-Xin;Du, Zi-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5137-5142
    • /
    • 2012
  • UHRF2 is a member of the ubiquitin plant homeo domain RING finger family, which has been proven to be frequently up-regulated in colorectal cancer cells and play a role as an oncogene in breast cancer cells. However, the role of UHRF2 in glioma cells remains unclear. In this study, we performed real-time quantitative PCR on 32 pathologically confirmed glioma samples (grade I, 4 cases; grade II, 11 cases; grade III, 10 cases; and grade IV, 7 cases; according to the 2007 WHO classification system) and four glioma cell lines (A172, U251, U373, and U87). The expression of UHRF2 mRNA was significantly lower in the grade III and grade IV groups compared with the noncancerous brain tissue group, whereas its expression was high in A172, U251, and U373 glioma cell lines. An in vitro assay was performed to investigate the functions of UHRF2. Using a lentivirus-based RNA interference (RNAi) approach, we down-regulated UHRF2 expression in the U251 glioma cell line. This down-regulation led to the inhibition of cell proliferation, an increase in cell apoptosis, and a change of cell cycle distribution, in which S stage cells decreased and G2/M stage cells increased. Our results suggest that UHRF2 may be closely related to tumorigenesis and the development of gliomas.

miR-485 Acts as a Tumor Suppressor by Inhibiting Cell Growth and Migration in Breast Carcinoma T47D Cells

  • Anaya-Ruiz, Maricruz;Bandala, Cindy;Perez-Santos, Jose Luis Martin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3757-3760
    • /
    • 2013
  • MicroRNAs (miRNAs) are small, non-coding RNAs (18-25 nucleotides) that post-transcriptionally modulate gene expression by negatively regulating the stability or translational efficiency of their target mRNAs. In this context, the present study aimed to evaluate the in vitro effects of miR-485 mimics in breast carcinoma T47D cells. Forty-eight hours after T47D cells were transfected with miR-485 mimics, an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was utilized to determine the effects on cell viability. Colony formation and cell migration assays were adopted to determine whether miR-485 affects the proliferation rates and cell migration of breast carcinoma T47D cells. Our results showed that ectopic expression of miR-485 resulted in a significant decrease in cell growth, cell colony formation, and cell migration. These findings suggest that miR-485 might play an important role in breast cancer by suppressing cell proliferation and migration.