• Title/Summary/Keyword: in vitro antimicrobial synergy

Search Result 7, Processing Time 0.026 seconds

In vitro efficacy of N-acetylcysteine in combination with antimicrobial agents against Pseudomonas aeruginosa in canine otitis externa

  • Son, Youngmin;Bae, Seulgi
    • Korean Journal of Veterinary Research
    • /
    • v.61 no.2
    • /
    • pp.16.1-16.6
    • /
    • 2021
  • Pseudomonas aeruginosa is one of the most common pathogenic species associated with canine otitis externa (OE). Their resilience is achieved by forming a biofilm, which allows these bacteria to evade even the harshest of treatments. This study evaluated the in vitro synergistic efficacy of N-acetylcysteine (NAC) with different antimicrobial agents against P. aeruginosa isolated from dogs with OE to develop an effective treatment against P. aeruginosa. The antimicrobial activity was evaluated by the minimum inhibitory concentration test using the microdilution method. The efficacy of antibiofilm formation was evaluated using a crystal violet stain method. The treatment solutions included NAC alone, and in synergy with enrofloxacin, polymyxin B, and gentamicin. NAC alone exhibited antimicrobial and antibiofilm abilities. On the other hand, the combination of NAC and the antibiotics did not show any significant synergistic effects against P. aeruginosa.

The Comparative Efficacy of Colistin Monotherapy and Combination Therapy Based on in vitro Antimicrobial Synergy in Ventilator-associated Pneumonia Caused by Multi-drug Resistant Acinetobacter baumannii (다제내성 Acinetobacter baumannii 에 의한 인공호흡기연관 페렴에서 Colistin 단독요법과 시험관 내 상승작용에 근거한 병합요법간의 효능 비교)

  • Jang, Hang Jea;Kim, Mi-Na;Lee, Kwangha;Hong, Sang-Bum;Lim, Chae-Man;Koh, Younsuck
    • Tuberculosis and Respiratory Diseases
    • /
    • v.67 no.3
    • /
    • pp.212-220
    • /
    • 2009
  • Background: Ventilator-associated pneumonia caused by multi-drug resistant Acinetobacter baumannii has been increasing and growing as a threat in intensive care units. Limited therapeutic options have forced clinicians to choose colistin with or without combination of other antibiotics. We tried to compare the effectiveness between colistin monotherapy and combination therapy based on in vitro synergistic tests. Methods: From January 2006 to December 2007 in medical ICU of a tertiary care hospital in Korea, We reviewed the medical records of patients treated with intravenous colistin due to ventilator-associated pneumonia caused by multi-drug resistant Acinetobacter baumannii. Results: A total of 41 patients were analyzed. 22 patients had been treated with colistin monotherapy and 19 patients with colistin and combination antibiotics that were found to have in vitro synergistic effects. Baseline characteristics were similar in both groups but the mean duration of colistin administration was significantly longer in the combination group (19.1${\pm}$11.2 days vs. 12.3${\pm}$6.8 days, p=0.042). There were no significant differences in outcome variables between the two groups. Conclusion: Combination treatment based on the in vitro antimicrobial synergy test did not show better outcomes compared with colistin monotherapy in VAP caused by multi-drug resistant A. baumannii.

In vitro Antimicrobial Combination Therapy in Metallo-β-lactamase Producing Pseudomonas aeruginosa (Metallo-β-lactamase 생성 Pseudomonas aeruginosa의 시험관내 항균제 병합요법에 대한 연구)

  • Hong, Seung-Bok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.3
    • /
    • pp.166-172
    • /
    • 2006
  • Metallo-${\beta}$-lactamase (MBL) can hydrolyze all ${\beta}$-lactams except monobactams and frequently coexists with various antibiotic resistance genes such as aminoglycoside resistance, sulfonamide resistance gene, etc. Therefore, the effective antibiotics against infections by these bacteria are markedly limited or can't even be found. We tried to search in-vitro antimicrobial combinations with synergistic effects for a VIM-2 type MBL producing Pseudomonas aeruginosa, isolated from clinical specimen. On the selection of antibiotic combinations with synergistic effects, we performed a one disk synergy test, modified Pestel's method, in agar without aztreonam (AZT). The bacteriostatic synergistic effects of this tests were scored as $S_1$ (by susceptibility pattern in agar without antibiotics), $S_2$ (by the change of susceptibility in agar with or without antibiotics) and $S_3$ ($S_1$ + $S_2$) and was classified into weak (1 point), moderate (2 points) and strong (3 points) by $S_3$ score. Subsequently, we carried out the time-killing curve for the antibiotic combinations with the strong synergistic bacteriostatic effect. One VIM-2 type MBL producing P. aeruginosa confirmed by the PCR showed all resistance against all ${\beta}$-lactams except AZT, aminoglycoside and ciprofloxacin. In the one disk synergy test, this isolate showed a strong bacteriostatic synergistic effect for the antibiotic combination of AZT and piperacillin-tazobactam (PIP-TZP) or AZT and amikacin (AN). On the time-killing curve after six hours of incubation, the colony forming units (CFUs/mL) of this bacteria in the medium broth with both combination antibiotics were decreased to 1/18.7, 1/17.1 of the least CFUs of each single antibiotics. The triple antibiotic combination therapy including AZT, PIP-TZP and AN was shown to be significantly synergistic after 8 hrs of exposure. In a VIM-2 MBL producing P. aeruginosa with susceptibility for AZT, the triple antibiotic combination therapy including AZT, PIP-TZP and AN may be considered as an alternative antibiotics modality against the infection by some MBL type. But the antimicrobial combination therapy for many more MBL producing isolates is essential to know as soon as possible for the selection of effective treatment against the infection by this bacteria.

  • PDF

Sclerotiorin: a Novel Azaphilone with Demonstrated Membrane Targeting and DNA Binding Activity against Methicillin-Resistant Staphylococcus aureus

  • Dasagrandhi, Chakradhar;Pandith, Anup;Imran, Khalid
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.429-438
    • /
    • 2020
  • The emergence of multi-drug resistant, pathogenic methicillin-resistant Staphylococcus aureus (MRSA) is a threat to global health and has created a need for novel functional therapeutic agents. In this study, we evaluated the underlying mechanisms of the anti-MRSA effect of an azaphilone pigment, sclerotiorin (SCL) from Penicillium sclerotiorum. The antimicrobial activity of SCL was evaluated using agar disc diffusion, broth microdilution, time-kill assays and biophysical studies. SCL exhibits selective activity against Gram positive bacteria including MRSA (range, MIC = 128-1028 ㎍/ml) and exhibited rapid bactericidal action against MRSA with a > 4 log reduction in colony forming units within three hours of administration. Biophysical studies, using fluorescent probes and laser or electron microscopy, demonstrated a SCL dose-dependent alternation in membrane potential (62.6 ± 5.0.4% inhibition) and integrity (> 95 ± 2.3%), and the release of UV260 absorbing materials within 60 min (up to 3.2 fold increase, p < 0.01) of exposure. Further, SCL localized to the cytoplasm and hydrolyzed plasmid DNA. While in vitro checkerboard studies revealed that SCL potentiated the antimicrobial activity of topical antimicrobials such as polymixin, neomycin, and bacitracin (Fractional Inhibitory Concentration Index range, 0.26-0.37). Taken together these results suggest that SCL targets the membrane and DNA of MRSA to facilitate its anti-MRSA antimicrobial effect.

Antibacterial Activity of Sophoraflavanone G Isolated from the Roots of Sophora flavescens

  • Cha, Jeong-Dan;Jeong, Mi-Ran;Jeong, Seung-Il;Lee, Kyung-Yeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.858-864
    • /
    • 2007
  • This study investigated the antibacterial activities of sophoraflavanone G from Sophora flavescens in combination with two antimicrobial agents against oral bacteria. The combined effect of sophoraflavanone G and the antimicrobial agents was evaluated using the checkerboard method to obtain a fractional inhibitory concentration(FIC) index. The sophoraflavanone G+ampicillin(AM) combination was found to have a synergistic effect against S. mutans, S. sanguinis, S. sobrinus, S. gordonii, A. actinomycetemcomitans, F nucleatum, P. intermedia, and P. gingivalis, whereas the sophoraflavanone G+gentamicin(GM) combination had a synergistic effect against S. sanguinis, S. criceti, S. anginosus, A. actinomycetemcomitans, F nucleatum, P. intermedia, and P. gingivalis. Neither combination exhibited any antagonistic interactions(FIC index>4). In particular, the MICs/MBCs for all the bacteria were reduced to one-half$\sim$one-sixteenth as a result of the drug combinations. A synergistic interaction was also confirmed by time-kill studies for nine bacteria where the checkerboard suggested synergy. Thus, a strong bactericidal effect was exerted through the drug combinations, plus in vitro data suggested that sophoraflavanone G combined with other antibiotics may be microbiologically beneficial rather than antagonistic.

Differences in Colistin-resistant Acinetobacter baumannii Clinical Isolates Between Patients With and Without Prior Colistin Treatment

  • Park, Yu Jin;Hong, Duck Jin;Yoon, Eun-Jeong;Kim, Dokyun;Choi, Min Hyuk;Hong, Jun Sung;Lee, Hyukmin;Yong, Dongeun;Jeong, Seok Hoon
    • Annals of Laboratory Medicine
    • /
    • v.38 no.6
    • /
    • pp.545-554
    • /
    • 2018
  • Background: The increasing morbidity and mortality rates associated with Acinetobacter baumannii are due to the emergence of drug resistance and the limited treatment options. We compared characteristics of colistin-resistant Acinetobacter baumannii (CR-AB) clinical isolates recovered from patients with and without prior colistin treatment. We assessed whether prior colistin treatment affects the resistance mechanism of CR-AB isolates, mortality rates, and clinical characteristics. Additionally, a proper method for identifying CR-AB was determined. Methods: We collected 36 non-duplicate CR-AB clinical isolates resistant to colistin. Antimicrobial susceptibility testing, Sanger sequencing analysis, molecular typing, lipid A structure analysis, and in vitro synergy testing were performed. Eleven colistin-susceptible AB isolates were used as controls. Results: Despite no differences in clinical characteristics between patients with and without prior colistin treatment, resistance-causing genetic mutations were more frequent in isolates from colistin-treated patients. Distinct mutations were overlooked via the Sanger sequencing method, perhaps because of a masking effect by the colistin-susceptible AB subpopulation of CR-AB isolates lacking genetic mutations. However, modified lipid A analysis revealed colistin resistance peaks, despite the population heterogeneity, and peak levels were significantly different between the groups. Conclusions: Although prior colistin use did not induce clinical or susceptibility differences, we demonstrated that identification of CR-AB by sequencing is insufficient. We propose that population heterogeneity has a masking effect, especially in colistin non-treated patients; therefore, accurate testing methods reflecting physiological alterations of the bacteria, such as phosphoethanolamine-modified lipid A identification by matrix-assisted laser desorption ionization-time of flight, should be employed.

A study on Antibacterial Activity of Samsinhwan Ethanol Extract against MRSA (삼신환(三神丸) 에탄올 추출물(SSH)의 MRSA에 대한 항균활성 연구)

  • Woo, Haksik;Lee, Yeoung Ju
    • Journal of Digital Convergence
    • /
    • v.17 no.8
    • /
    • pp.271-282
    • /
    • 2019
  • The purpose of this study is to identify the antimicrobial effects of SSH(三神丸) and synerggy effects of the existing antibiotics Oxacillin and Ciprofloxacin on MRSA and to identify the mechanisms. In this case, the procedure and method for verifying anti-bacterial activity and active concentration of MARA by measuring the minimum inhibitory concentration (MIC) of the trichin is used to verify the potency and active concentration of MARA, to confirm the potency of the disease by treating antibiotics and trichine ethanol extract in parallel, and to confirm the anti-bacterial effect over time, when the trichine is activated as an anti-bacterial activity to MARA, and a compound. In addition, we hope that this research will not only serve as meaningful data for the development of new drugs to control MARA immunity, but also serve as an opportunity to further accelerate the research and development of antibiotics to overcome resistant strains.