• Title/Summary/Keyword: in vitro antifungal activity

Search Result 277, Processing Time 0.026 seconds

Plant Growth Promotion and Antagonistic Activities Against Anthracnose of Burkholderia sp. LPN-2 Strain

  • Kim, WonChan;Seo, SangHyun;Lee, ChangHee;Park, JunHong;Kang, SangJae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.3
    • /
    • pp.251-258
    • /
    • 2016
  • A rhizobacterium LPN-2, which showed strong antifungal activity and auxin producing ability, was isolated from a farmland in North Gyeongsang Province, South Korea. Based on analysis of the 16S rDNA sequence, strain LPN-2 was identified as a novel strain of Burkholderia and was designated as Burkholderia sp. LPN-2. In vitro experiments showed that the isolated stain LPN-2 significantly produced auxin within 48 hr incubation. In order to check for PGPR function we performed in vivo growth promoting test in different crops, including mung bean, pea and cabbage. Application of Burkholderia sp. LPN-2 showed dramatic growth promoting effect on all the tested plants. We also confirmed siderophore and cellulase productions by Burkholderia sp. LPN-2 using CAS blue agar and CMC plate test. Further treatment with LPN-2 and the crude culture broth was effective in suppressing anthracnose in vitro test and also reduced incidence and severity of anthracnose in apple and pepper. Taken together, we conclude that Burkholderia sp. LPN-2 might be used as organic fertilizer for effective crop production in organic farming.

Antifungal Activity of Prochloraz and Triadimefon on Valsa ceratosperma (사과나무 부란병(腐爛病)에 대(對)한 Prochloraz와 Triadimefon의 항균성(抗菌性))

  • Hong, Jong Uck;Lee, Dong Jin;Kim, Jang Eok
    • Current Research on Agriculture and Life Sciences
    • /
    • v.7
    • /
    • pp.33-40
    • /
    • 1989
  • In order to elucidate the antifungal activity of prochloraz(imidazole) and triadimefon(triazole), the mycelia of the Valsa ceratosperma were treated with the compounds in vitro. Prochloraz applied to the target pathogen inhibited mycelial growth more than triadimefon. The concentration for the 50% inhibition of mycelial growth ($I_{50}$) was 1-5 ppm in treatment of prochloraz and 5-10 ppm in treatment of triadimefon. The mycelia of Valsa ceratosperma treated with low concentration of prochloraz and triadimefon were morphologically abnormal as observed with an optical microscope. Content of total lipid and fatty acids were not changed by the treatments of prochloraz and triadimefon, respectively, in liquid medium.

  • PDF

Efficient assay for respiration inhibitor using Saccharomyces cerevisiae (Saccharomyces cerevisiae를 이용한 효율적인 호흡저해제 검정법)

  • Choi, Gyung-Ja;Kim, Jin-Cheol;Kim, Heung-Tae;Cho, Kwang-Yun
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.3
    • /
    • pp.52-59
    • /
    • 2000
  • A rapid assay to determine respiration inhibition of Saccharomyces cerevisiae by chemicals was developed. S. cerevisiae was harvested with two different liquid media, yeast extract-peptone-dextrose (YPD) medium capable of occurring both glucose fermentation and mitochondrial respiration, and non-fermentable carbon-yeast extract (NFY) medium capable of occurring respiration only Wells in 96-well plate were loaded with each cell suspension and various concentrations of 46 fungicides with various modes of action. n NFY medium, the non-fermentable carbon source, ethanol (NFY-E medium), glycerol (NFY-G medium) or lactate (NFY-L medium), was used. After incubation for $1{\sim}3$ days, minimum inhibitory concentrations (MICs) of the chemicals were recorded in the media. Of the 46 inhibitors employed in this study, four inhibitors of fungal respiration by blockage of electron flux in the mitochondrial respiratory chain, azoxystrobin, kresoxim-methyl, metominostrobin, and trifloxystrobin, exhibited strong antifungal activity in all of NFY media, but no activity in YPD medium. In contrast to this, five N-trihalomethylthio fungicides showed much stronger antifungal activities in YPD medium than three NFY media. Eleven fungicides inhibited growth of S. cerevisiae in all media and the other 26 fungicides showed no antifungal activity in all media. Thus, our rapid and efficient in vitro method can be considered as an alternative assay system for respiration inhibitor.

  • PDF

Isolation and Identification of Antagonistic Bacteria for Biological Control of Large Patch Disease of Zoysiagrass Caused by Rhizoctonia solani AG2-2 (IV) (들잔디 갈색퍼짐병의 생물학적 방제를 위한 길항 세균의 분리와 동정)

  • Song, Chi-Hyun;Islam, Md. Rezuanul;Chang, Tae-Hyun;Lee, Yong-Se
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.1
    • /
    • pp.8-16
    • /
    • 2012
  • The objective of this study was to identify bacterial antagonists of R. solani AG2-2 (IV) on zoysiagrass and to evaluate their antifungal activity in vitro and in vivo to select an antagonistic isolate. Antagonistic isolates that inhibit large patch disease caused by R. solani AG2-2 (IV) in zoysiagrass were selected from several soils, and their antagonistic activities were investigated in vitro and in vivo. Of 216 bacterial isolates, 67 inhibited several plant pathogenic fungi. The isolates that inhibited stem-segment colonization by R. solani AG2-2 (IV) in zoysiagrass were tested in a growth chamber. Eleven isolates were active as plant growth promoting isolates. Among them, five plant growth promoting isolates and their concentration dependent efficiency on zoysiagrass following inoculation with R. solani AG2-2 (IV) was evaluated. Isolate H33 was one of the potential antagonistic isolates, and it was further tested against various plant pathogens. H33 not only suppressed the disease caused by R. solani AG2-2 (IV) on zoysiagrass but also promoted leaf weight and leaf height of zoysiagrass under growth chamber and greenhouse conditions. The H33 isolate, which belongs to Streptomyces arenae, was identified through physiological, biochemical, and 16S rDNA studies. Further studies will investigate the cultural characterization of S. arenae H33 and isolation and identification of antifungal substance produced by S. arenae H33.

Effect of Biphenyl Dimethyl Dicarboxylate on the Immunosuppression of Ketokonazole (비페닐 디메칠 디카르복실레이트가 케토코나졸의 면역억제에 미치는 영향)

  • Lim, Jong-Pil;Yang, Jae-Heon
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.4
    • /
    • pp.241-247
    • /
    • 1998
  • Ketoconazole is an imidazole antifungal agent which inhibits the biosynthesis of fungal cellmembrane ergosterol and has immunosuppressive properties in vitro. Biphenyl dimethyl dicarboxylate (PMC) has been utilized for antioxidative action and for liver-protective purposes. Studies were undertaken to investigate effects of biphenyl dimethyl dicarboxylate (PMC) on the immunosuppression of ketoconazole in ICR mice. In the combination of PMC and ketoconazole, as compared with the treatment of ketoconazole alone, there were significant increases in activities of natural killer (NK) cells and phagocytes along with circulation leukocytes. The elevation of serum glutamic-pyruvic transaminase (S-GPT) and total protein levels caused by ketoconazole were reduced by the combination of PMC and ketoconazole. In addition, lower serum albumin and albumin/globulin (A/G) ratio were also increased to normal level.

  • PDF

Antifungal Activity of Alcohol Extract and Crystal(A) of Berberis Koreana Palibin (매자나무뿌리 알콜 추출물의 항진균 작용)

  • Kim, Yoon-Keun;Park, Chung-Soon
    • The Korean Journal of Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.51-54
    • /
    • 1969
  • The fungistatic effects of extract and crystal (A) of Berberis Koreans Palibin, a common shrub in Korea, were obeserved and compared with undecylenic acid and vegetable oil. In vitro studies, the spores of fungi were inoculated on Sabouraud's glucose agar media which contained compounds of various concentration, and the growth of the fungi was observed for 3 weeks. The species of the fungi used in these experiments were Epidermophyton floccosum, Microsporum gypseum, Microsporum audouini, Microsporum canis, Microsporum nanum, Microsporum cookei, Trichophyton rubrum, Trichophyton mentagrophytes, Trichophyton tonsurans and Trichophyton verrucosum. The results of the studies were as follows: 1. The growth of E. floccosum, M. audouni, M. canis, M. nanum, M. cookei, was inhibited in Sabouraud's glucose agar media containing extract and crystal (A) of Berberis Koreana Palibin 1 mg/ml.

  • PDF

Synthesis and Biological Evaluation of New Allylamine Antimycotics (새로운 알릴아민 항진균제의 합성과 생물학적 평가)

  • Jeong, Byeong-Ho;Park, Eun-Ju;Mun, Hyeon-Ju;Yu, Jin-Cheol
    • YAKHAK HOEJI
    • /
    • v.40 no.5
    • /
    • pp.507-512
    • /
    • 1996
  • Some allylamine compounds which are benzothiazole substituants in stead of naphthyl ring in naftifine, antifungal agents, were synthesized as potential antimycotics. The interme diate Schiff bases that were obtained by condensation of 2-aminobenzothiazole and trans-cinnamaldehyde, were reduced to imine compounds to give allylamines (5a-5d) after methylation. These compounds which were tested in vitro against five fungal cell lines containing Trichophyton mentagrophytes, showed no activity in 0.1~100${\mu}$g/ml range.

  • PDF

Antifungal Activity of Bacillus sp. GJ-1 Against Phytophthora capsici (Bacillus sp. GJ-1의 Phytophthora capsici에 대한 항진균활성)

  • Lee, Gun-Joo;Han, Joon-Hee;Shin, Jong-Hwan;Kim, Heung Tae;Kim, Kyoung Su
    • The Korean Journal of Mycology
    • /
    • v.41 no.2
    • /
    • pp.112-117
    • /
    • 2013
  • Phytophthora capsici is one of major limiting factors in production of pepper and other important crops worldwide by causing foliage blight and rot on fruit and root. Increased demand for the replacement of fungicides has led to searching a promising strategy to control the fungal diseases. To meet eco-friendly agriculture practice, we isolated microorganisms and assessed their beneficial effects on plant health and disease control efficacy. A total of 360 bacterial strains were isolated from rhizosphere soil of healthy pepper plants, and categorized to 5 representative isolates based on colony morphology. Among the 5 bacterial strains (GJ-1, GJ-4, GJ-5, GJ-11, GJ-12), three bacterial strains (GJ-1, GJ-11, GJ-12) presented antifungal activity against P. capsici in an fungal inhibition assay. In phosphate solubilization and siderophore production, the strain GJ-1 was more effective than others. The strain GJ-1 was identified as Bacillus sp. using 16S rDNA analysis. Bacillus sp. GJ-1 was also found to be effective in inhibiting other plant pathogenic fungi, including Rhizoctonia solani, Pythium ultimum and Fusarium solani. Therefore, the Bacillus sp. GJ-1 can serve as a biological control agent against fungal plant pathogens.

Biocontrol Activity of Myxococcus sp. KYC 1126 against Phytophthora Blight on Hot Pepper (점액세균 Myxococcus sp. KYC 1126을 이용한 고추 역병 생물학적 방제 효능)

  • Kim, Sung-Taek;Yun, Sung-Chul
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.121-128
    • /
    • 2011
  • Bacteriolytic myxobacteria have been known to secrete various antifungal metabolites against several soilborne phytopathogens including Phytophthora. Among the three isolates of Myxococcus spp., KYC 1126 and KYC 1136 perfectly inhibited the mycelial growth of Phytophtora capsici in vitro. In order to show the biocontrol activity on Phytophthora blight of hot pepper, we tried to find the best way of application of a myxobacterial isolate. Although KYC 1126 fruiting body was easily grown on the colony of Escherichia coli as a nutrient source, it did not control the disease when it was pre-applied in soil. Before the bioassay of a liquid culture filtrate of KYC 1126 was conducted, its antifungal activity was confirmed on the seedlings applying with the mixture of the pathogen's zoospore suspension and KYC 1126 filtrate. On greenhouse experiments with five and four replications, the control value of KYC 1126 on phyllosphere and rhizosphere was 88% and 36%, respectively. Whereas, the control value of dimetnomorph+propineb on phyllosphere was 100% and that of propamorcarb on rhizosphere was 44%. There was a phytotoxicity of the myxobacterial filtrate when seedlings were washed and soaked for 24 hours. Gummy materials were covered with roots. And stem and petiole were constricted, then a whole seedling was eventually blighted.

In vitro Inhibitory Activities of Essential Oils from Oenanthe javanica DC against Candida and Streptococcus species

  • Shin, Seung-Won
    • Natural Product Sciences
    • /
    • v.10 no.6
    • /
    • pp.325-329
    • /
    • 2004
  • The composition of essential oil from O. javanica was analyzed by gas chromatography-mass spectrometry. Using the broth dilution method and disk diffusion test, anti-microbial activities of the oil fraction and its main components were evaluated against various antibiotic-susceptible and resistant strains of pathogenic microorganisms. As a result of GC-MS analysis, 57 compounds, including ${\alpha}-terpinolene$ (28.1%), dl-limonene (16.0%), ${\gamma}-terpinene$ (10.3%), ${\beta}-pinene$ (9.7%) and ${\alpha}-pinene$ (6.0%) were identified in the essential oil fraction. The essential oil fraction of O. javanica and its main components exhibited significant inhibitory activities, particularly against Candida albicans (antibiotic-susceptible strains) and Streptococcus pneumoniae (antibiotic- susceptible and resistant strains). The main components of the O. javanica oil fraction displayed different patterns of activity against the three tested Candida species as exemplified by the differential minimum inhibiting concentration (MIC) values. The disk diffusion test showed that the activities were dose dependent.