• Title/Summary/Keyword: in vitro anticancer effect

Search Result 215, Processing Time 0.03 seconds

SYNERGISTIC APOPTOTIC EFFECT OF TAXOL ON ORAL SQUAMOUS CELL CARCINOMA BY CYCLOSPORIN A (구강 편평세포암종에서 Taxol과 Cyclosporin A의 세포사멸 상승 작용 효과)

  • Suh, Min-Jung;Han, Se-Jin;Lee, Jae-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.29 no.5
    • /
    • pp.394-404
    • /
    • 2007
  • Oral squamous cell carcinoma is the most prevalent oral cancer, which is characterized by its high metastasis and recurrent rates and poor prognosis. Taxol is an anticancer agent which is microbial products extracted from jew tree. It combines with the tubulin and induces apoptosis by inhibiting mitosis of cell with microtubule stabilization. Recently, it was reported to be effective in various solid tumors, but only very slight effect has been seen in oral squamous cell carcinomas due to its cell-specific potencies. Cyclosporin A is used as immune suppressant and is being applied in anticancer therapy as its mechanism of induction of change of apoptotic process in various cells have been known. In this study, oral squamous cell carcinoma HN22 cell line was used for in vitro experiment and as for the experimental group taxol and cyclosporin A were applied alone and to observe the synergistic effect of apoptosis, Taxol and cyclosporin A were coadministered with different concentration of taxol for comparison. The results were obtained as follow: 1. There was no difference in Bcl-2, Bax, caspase 3, 8, 9 mRNA expression when cyclosprin A or taxol was applied alone to HN 22 cell line. 2. Caspase 3, 9 mRNA expression was prominently increased when cyclosprin A and taxol were applied together to cancer cell. 3. No significant difference was observed when cyclosporin A and taxol($1{\mu}g/ml$ and $3{\mu}g/ml$) were applied together to cancer cell line. 4. No significant difference was seen in Bcl-2, Bax, and caspase 8 mRNA expression in all the groups of in vitro experiments. 5. When cyclosporin A was applied alone in vivo study on the nude mice, histopathologi cal findings was similar to those of the control group. Oral squamous cell carcinoma induced by inoculation of HN 22 cell line was not reduced after treatment of cyclosporin A. 6. When taxol was applied alone, the islands of squamous cell carcinoma still remained, which meant insignificant healing effect. There was a lesser volume increase compared with the cyclosporin A alone. 7. When taxol and cyclosporin A were applied together, the connective tissue and calcification were seen in the histopathologic findings. Oral squamous cell carcinoma was decreased and cancer cell was disappeared. In observing the tumor mass change with time, there was a gradual decreased size and healing features. As the results of the in vitro experiment, it could conclud that only when the two agents are applied together, mitochondria-mediated apoptosis occurred by considerable increase of caspase 3, 9 mRNA expression, irrespectable of the concentration of taxol. In vivo experiment, there was a discrete synergistic effect when the two agents were applied together. But single use of cyclosporin A was not effective in this study. Based on the results of this experiment, if further clinical studies are done, taxol and cyclosporin A could be effectively used in treatment of oral squamous cell carcinomas.

In vitro Cytotoxic Effect of Extracts from Styela plicata (오만둥이(Styela plicata) 추출물의 in vitro 세포독성 효과)

  • Lee, Bo-Bae;Cha, Mi-Ran;Park, Hae-Ryong;Lee, Seung-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.9
    • /
    • pp.1099-1105
    • /
    • 2007
  • The present study describes the preliminary evaluation of the anticancer activity of Styela plicata. Freeze-dried S. plicata was extracted with methanol, ethanol, acetone, and water, and then anticancer effect of the extracts was measured by the MTT reduction assay and phase-contrast microscopy on the HT-29 human colon carcinoma cells. Among the extracts, acetone extract showed the highest anticancer activity. The cell proliferation rates markedly decreased by 94.0% at the concentration of 500 ${\mu}g/mL$ of acetone extract compared with control cells. The acetone extract was further fractionated with hexane, diethyl ether, ethyl acetate, and water layer according to the degree of polarity. The HT-29 cells with hexane layer extract (250 ${\mu}g/mL$) decreased the cell viability to 5.1% of untreated control. The growth of SW620, HeLa, and MCF-7 cells was decreased to about 10%, by the treatment of hexane layer extract 250 ${\mu}g/mL$. Theses results suggest extracts from S. plicata as possible natural cancer therapeutic material.

Bispecific Antibody-Bound T Cells as a Novel Anticancer Immunotherapy

  • Cho, Jaewon;Tae, Nara;Ahn, Jae-Hee;Chang, Sun-Young;Ko, Hyun-Jeong;Kim, Dae Hee
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.418-426
    • /
    • 2022
  • Chimeric antigen receptor T (CAR-T) cell therapy is one of the promising anticancer treatments. It shows a high overall response rate with complete response to blood cancer. However, there is a limitation to solid tumor treatment. Additionally, this currently approved therapy exhibits side effects such as cytokine release syndrome and neurotoxicity. Alternatively, bispecific antibody is an innovative therapeutic tool that simultaneously engages specific immune cells to disease-related target cells. Since programmed death ligand 1 (PD-L1) is an immune checkpoint molecule highly expressed in some cancer cells, in the current study, we generated αCD3xαPD-L1 bispecific antibody (BiTE) which can engage T cells to PD-L1+ cancer cells. We observed that the BiTE-bound OT-1 T cells effectively killed cancer cells in vitro and in vivo. They substantially increased the recruitment of effector memory CD8+ T cells having CD8+CD44+CD62Llow phenotype in tumor. Interestingly, we also observed that BiTE-bound polyclonal T cells showed highly efficacious tumor killing activity in vivo in comparison with the direct intravenous treatment of bispecific antibody, suggesting that PD-L1-directed migration and engagement of activated T cells might increase cancer cell killing. Additionally, BiTE-bound CAR-T cells which targets human Her-2/neu exhibited enhanced killing effect on Her-2-expressing cancer cells in vivo, suggesting that this could be a novel therapeutic regimen. Collectively, our results suggested that engaging activated T cells with cancer cells using αCD3xαPD-L1 BiTE could be an innovative next generation anticancer therapy which exerts simultaneous inhibitory functions on PD-L1 as well as increasing the infiltration of activated T cells having effector memory phenotype in tumor site.

Resveratrol raises in vitro anticancer effects of paclitaxel in NSCLC cell line A549 through COX-2 expression

  • Kong, Fanhua;Zhang, Runqi;Zhao, Xudong;Zheng, Guanlin;Wang, Zhou;Wang, Peng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.465-474
    • /
    • 2017
  • The aim of this study was to determine the raising anticancer effects of resveratrol (Res) on paclitaxel (PA) in non-small cell lung cancer (NSCLC) cell line A549. The $10{\mu}g/ml$ of Res had no effect on human fetal lung fibroblast MRC-5 cells or on A549 cancer cells and the 5 or $10{\mu}g/ml$ of PA also had no effect on MRC-5 normal cells. PA-L ($5{\mu}g/ml$) and PA-H ($10{\mu}g/ml$) had the growth inhibitory effects in NSCLC cell line A549, and Res increased these growth inhibitory effects. By flow cytometry experiment, after Res ($5{\mu}g/ml$)+PA-H ($10{\mu}g/ml$) treatment, the A549 cells showed the most apoptosic cells compared to other group treatments, and after additional treatment with Res, the apoptosic cells of both two PA concentrations were raised. Res+PA could reduce the mRNA and protein expressions of COX-2, and Res+PA could reduce the COX-2 related genes of VEGF, MMP-1, MMP-2, MMP-9, $NF-{\kappa}B$, Bcl-2, BclxL, procollagen I, collagen I, collagen III and CTGF, $TNF-{\alpha}$, $IL-1{\beta}$, iNOS and raise the TIMP-1, TIMP-2, TIMP-3, $I{\kappa}B-{\alpha}$, p53, p21, caspase-3, caspase-8, caspase-9, Bax genes compared to the control cells and the PA treated cells. From these results, it can be suggested that Res could raise the anticancer effects of PA in A549 cells, thus Res might be used as a good sensitizing agent for PA.

Antiangiogenic Activity of Coptis chinensis Franch. Water Extract in in vitro and ex vivo Angiogenesis Models (In vitro와 ex vivo 혈관신생 모델에서 황련 냉수추출물의 신생혈관 억제효과)

  • Kim, Eok-Cheon;Kim, Seo Ho;Lee, Jin-Ho;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.78-88
    • /
    • 2017
  • Angiogenesis, the formation of new blood vessels, plays an important role in tumor growth and metastasis; therefore, it has become an important target in cancer therapy. Novel anticancer pharmaceutical products that have relatively few side effects or are non-cytotoxic must be developed, and such products may be obtained from traditional herbal medicines. Coptis chinensis Franch. is an herb used in traditional medicine for the treatment of inflammatory diseases and diabetes. However, potential antiangiogenic effects of C. chinensis water extract (CCFWE) have not yet been studied. The purpose of this study was to determine the antiangiogenic effect of CCFWE in order to evaluate its potential for an anticancer drug. We found that the treatment with CCFWE inhibited the major steps of the angiogenesis process, such as the endothelial cell proliferation, migration, invasion, and capillary-like tube formation in response to vascular endothelial growth factor (VEGF), and also resulted in the growth inhibition of new blood vessels in an ex vivo rat aortic ring assay. We also observed that CCFWE treatment arrested the cell cycle at the G0/G1 phase, preventing the G0/G1 to S phase cell cycle progression in response to VEGF. In addition, the treatment reduced the VEGF-induced activation of matrix metalloproteinases 2 and 9. Taken together, these findings indicate that CCFWE should be considered a potential anticancer therapy against pathological conditions where angiogenesis is stimulated during tumor development.

Anticancer (in vitro) and Antiallergy Effects of Rice Bran Extracts (쌀겨 추출물의 항암효과(in vitro) 및 항알레르기 효과)

  • Choi, Hyun-Im;Ye, Eun-Ju;Kim, Soo-Jung;Bae, Man-Jong;Yee, Sung-Tae;Park, Eun-Jung;Park, Eun-Mi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.10
    • /
    • pp.1297-1303
    • /
    • 2006
  • This study was conducted to investigate the anticancer (in vitro) and antiallergy effects of rice bran extracts. In an anticancer test using Hep3B cells and HeLa cells, water and 60% ethanol extracts of rice bran inhibited the growth of Hep3B and HeLa cell lines and morphological changes were also observed. In Hep3B cell lines, water extract of rice bran showed a higer antiproliferating effect than 60% ethanol extract. The growth-inhibitory effect against HeLa cells were 30.9% for $1,000{\mu}g/mL$, 88.8% for $3,000{\mu}g/mL$ rice bran water extract. The expressions of $Fc{\varepsilon}RI$ mRNA and c-kit in HMC-1 (human mast cell) were decreased by 60% ethanol treatment but tryptase mRNA was not changed. The extracts of rice bran inhibited histamine release from RPMC (rat peritoneal mast cell) activated by compound 48/80. Rice bran water extract showed inhibitory effect of 87% at $0.01{\mu}g/mL$ concentration and 60% ethanol extract inhibited the release of histamine by 86% at $100{\mu}g/mL$ concentration.

Safety and Anticancer Effects of Platycodon grandiflorum Extracts (도라지 추출물의 안전성 및 항암 효과)

  • Kim, Soo-Hyun;Chung, Mi Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.4
    • /
    • pp.516-523
    • /
    • 2015
  • This study investigated the antimutagenic and anticancer effects of Platycodon grandiflorum extract (PGE) and its fractions against carcinogenic N-nitrosodimethylamine (NDMA) and genotoxicity. The Ames Salmonella mutagenicity test employing histidine mutants of Salmonella Typhimurium TA98 and TA100 was used to examine the mutagenicity of PGE and its fractions. Bacterial reversion assay with S. Typhimurium TA98 and TA100 did not show a significantly increased number of revertant colonies. The same test was used to examine the ability of PGE and its fractions to prevent acquisition of N-methyl-N'-nitro-N-nitrosoguanidine- and 4-introquino-line-1-oxide-induced mutations. PGE and its fractions inhibited mutagenesis in a dose-dependent manner. Among the fractions, ethyl acetate fraction from PGE (PGEA) exhibited a higher antimutagenic effect than other fractions. PGE and its fractions suppressed the growth of cancer cell lines, including human cervical adenocarcinoma, human hepatocellular carcinoma, human breast adenocarcinoma, human lung carcinoma, and transformed primary human embryonic kidney cells. In addition, we evaluated the antitumor activity of PGEA and its fractions in sacorma-180 solid tumor-bearing mice. In vivo anticancer activity results showed that PGE and its fractions could more effectively suppress tumor growth than the control. PGEA showed higher in vitro and in vivo anticancer effects than PGE and other fractions, and PGEA inhibited NDMA formation. Thus, we showed that PGEA has antimutagenic and anticancer activities, making it a candidate anticancer material under these experimental conditions.

OK-432 Suppresses Proliferation and Metastasis by Tumor Associated Macrophages in Bladder Cancer

  • Tian, Yuan-Feng;Tang, Kun;Guan, Wei;Yang, Tao;Xu, Hua;Zhuang, Qian-Yuan;Ye, Zhang-Qun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4537-4542
    • /
    • 2015
  • OK-432, a Streptococcus-derived anticancer immunotherapeutic agent, has been applied in clinic for many years and achieved great progress in various cancers. In the present study, we investigated its anticancer effect on bladder cancer through tumor associated macrophages (TAMs). MTS assay validated OK-432 could inhibit proliferation in both T24 and EJ bladder cell lines. OK-432 also induced apoptosis of bladder cancer cells in vitro. Consequently, we demonstrated that OK-432 could suppress the bladder cancer cells migration and invasion by altering the EMT-related factors. Furthermore, using SD rat model, we revealed that OK-432 inhibited tumor growth, suppressed PCNA expression and inhibited metastasis in vivo. Taken together, these findings strongly suggest that OK-432 inhibits cell proliferation and metastasis through inducing macrophages to secret cytokines in bladder cancer.

CHEMOSENSITIVITY OF CANCER CELLS TO ANTICANCER DRUGS USING DYE EXCLUSION ASSAY, [3H] THYMIDINE INCORPORATION, AND CLONOGENIC ASSAY (두경부악성종양세포주의 항암제감수성 시험에 관한 실험적 연구)

  • Jin, Woo-Jeong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.15 no.1
    • /
    • pp.35-48
    • /
    • 1993
  • The in vitro predictive tests in cancer chemotherapy of cancer cell lines to anticancer drugs were determined using novel dye exclusion assay [NDEA], [3H] thymidine incorporation, and clonogenic assay [CA>. Antitumor effect of Bleomycin, Cis-platin, Vinblastine, Methotrexate to HEp-2, B16 cell lines using rapid assays was compared with [CA> in this study. In dye exclusion assay of B l6 cell line, cancer cells were sensitive to Bleomycin at all concentrations, to Vinblastine at the level of peak plasma concentration [PPC], ${\times}1/10$ [PPC](P<0.05). And Bleomycin revealed relatively good cytotoxicity than that of CDDP and vinblastine at ${\times}10$[PPC], (P<0.05). HEp-2 cells were resistive to methotrexate at the level of ${\times}100$[PPC] (P<0.05) In [3H] thymidine incorporation assay, B 16 cells were sensitive to Bleomycin, CDDP, Vinblastine at the level of [PPC], ${\times}10$ [PPC](P<0.01). Dose-dependent drugs of bleomycin, CDDP were more sensitive than Vinblastine at high concentration (P<0.05). In clonogenic assay, HEp-2 cell line was sensitive to three drugs of all concentrations except ${\times}10$ [PPC] of CDDP. B 16 cell line was sensitive to all drugs(P<0,01). In comparison of chemosensitivity tests among three assays, the results were correlated(${\gamma}=0.99$, P<0.05).

  • PDF

Inhibitory effects of fenbendazole, an anthelmintics, on lipopolysaccharide-activated mouse bone marrow cells (지질다당류로 활성화된 마우스 골수세포에서 구충제 Fenbendazole의 억제 효과)

  • Park, Seo-Ro;Joo, Hong-Gu
    • Korean Journal of Veterinary Research
    • /
    • v.61 no.3
    • /
    • pp.22.1-22.7
    • /
    • 2021
  • Fenbendazole (FBZ) is a commonly used anthelmintics in veterinary medicine that has recently been found to have anticancer effects in humans. On the other hand, few studies have examined the anti-inflammatory effects of FBZ, and its mechanism is unknown. In this study, mouse bone marrow cells (BMs) were treated with lipopolysaccharide (LPS), a representative inflammation-inducing substance, to generate a situation similar to osteomyelitis in vitro. The effect of FBZ on inflammatory BMs was examined by measuring the metabolic activity, surface marker expression, cell nuclear morphology, and mitochondrial membrane potential (MMP) of BMs. FBZ decreased the metabolic activity and MMP of LPS-treated BMs. Annexin V-fluorescein isothiocyanate/propidium iodide staining and Hoechst 33342 staining showed that FBZ reduced the number of viable cells and induced the cell death of inflammatory BMs. In addition, FBZ reduced the proportion of granulocytes more than B lymphocytes in LPS-treated BMs. Overall, FBZ induces cell death by destabilizing the MMP of LPS-induced inflammatory BMs. In addition to anthelmintic and anticancer agent, FBZ can play a role as an anti-inflammatory agent.