• Title/Summary/Keyword: in situ thermal analysis

Search Result 122, Processing Time 0.027 seconds

Preparation and Properties of Crosslinkable Waterborne Polyurethanes Containing Aminoplast(I)

  • Kwon Ji-Yun;Kim Han-Do
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.373-382
    • /
    • 2006
  • A series of crosslinkable, waterborne polyurethanes (I-WBPUs) were prepared by in-situ polymerization using isophorone diisocyanate (IPDI)/poly(tetramethylene oxide) glycol (PTMG, $M_n$=2,000)/dimethylol propionic acid (DMPA)/ethylene diamine (EDA)/triethylamine (TEA)/aminoplast[hexakis(methoxymethyl)melamine (HMMM)] as a crosslinking agent. Typical crosslinkable, waterborne polyurethanes (B-WBPUs) blended from WBPU dispersion and aqueous HMMM solution was also prepared to compare with the I-WBPUs. The crosslinking reaction between WBPU and HMMM was verified using FTIR and XPS analysis. The effect of the HMMM contents on the dynamic mechanical thermal, thermal, mechanical, and adhesion properties of the I-WBPU and B-WBPU films were investigated. The storage modulus(E'), glass transition temperatures of the soft segment ($T_{gs}$) and the amorphous regions of higher order ($T_{gh}$), melting temperature ($T_m$), integral procedural decomposition temperature (IPDT), residual weight, $T_{10%}$ and $T_{50%}$ (the temperature where 10 and 50% weight loss occurred), tensile strength, initial modulus, hardness, and adhesive strength of both I-WBPU and B-WBPU systems increased with increasing HMMM content. However, these properties of the I-WBPU system were higher than those of the B-WBPU system at the same HMMM content. These results confirmed the in-situ polymerization used in this study to be a more effective method to improve the properties of the WBPU materials compared to the simple blending process.

Prediction of Thermal Load Distribution and Temperature of the Superheater in a Tangentially Fired Boiler (접선 연소식 보일러의 최종 과열기 열부하 분포 및 튜브 온도 예측에 관한 연구)

  • Park, Ho-Young;Sea, Sang-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.478-485
    • /
    • 2008
  • The extreme steam temperature deviation experienced in the superheater of a tangentially fired boiler can seriously affect its economic and safe operation. This temperature deviation is one of the main causes of boiler tube failures. The steam temperature deviation is mainly due to the thermal load deviation in the lateral direction of the superheater. The thermal load deviation consists of several causes. One of the causes is the non-uniform heat flow distribution of burnt gas on the superheater tube system. This distribution is very difficult to measure in situ using direct experimental techniques. So, we need thermal load model to estimate the tube temperature. In this paper, we propose a thermal load distribution model by using CFD analysis and plant data. We successfully predict the tube temperature and the steam flow rate in a final superheater system from the thermal load model and one dimensional heat-flow system analysis. The proposed model and analysis method would be valuable in preventing the frequent tube failure of the final superheater tubes.

Performance and Microbial Characteristics of Bio-hydrogen Production from Food Waste with Thermal Pre-treatment (음식물류 폐기물의 혐기성 수소 발효 시 열처리에 따른 성능 및 미생물 특성 평가)

  • Lee, Chaeyoung;Choi, Jaemin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.11-18
    • /
    • 2014
  • This study was conducted to investigate the effect of thermal pre-treatment on bio-hydrogen from food waste. Two continuous reactors operated and VFAs(volatile fatty acids) production and microbial communities were analyzed. The average hydrogen yield was 0.50 and 0.33mol $H_2/mol$ $hexose_{added}$ in thermally treated food added reactor(R1) and control(R2), respectively. Butyrate concentration was similarly 7,500mg/L in both reactors, but two times higher lactate concentration was observed in R2(3,800mg/L). The results of FISH(fluorescence in situ hybridization) showed that the relative microorganism to hydrogen producing bacteria was 78 and 27% in R1 and R2, respectively.

Analysis of Surface Temperature Characteristics by Land Surface Fabrics Using UAV TIR Images (UAV 열적외 영상을 활용한 피복재질별 표면온도 특성 분석)

  • SONG, Bong-Geun;KIM, Gyeong-Ah;SEO, Kyeong-Ho;LEE, Seung-Won;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.162-175
    • /
    • 2018
  • The purpose of this study was to analyze the surface temperature of surface fabrics using UAV TIR images, to mitigate problems in the thermal environment of urban areas. Surface temperature values derived from UAV images were compared with those measured in-situ during the similar period as when the images were taken. The difference in the in-situ measured and UAV image derived surface temperatures is the highest for gray colored concrete roof fabrics, at $17^{\circ}C$, and urethane fabrics show the lowest difference, at $0.3^{\circ}C$. The experiment power of the scatter plot of in-situ measured and UAV image derived surface temperatures was 63.75%, indicating that the correlation between the two is high. The surface fabrics with high temperature are metal roofs($48.9^{\circ}C$), urethane($43.4^{\circ}C$), and gray colored concrete roofs($42.9^{\circ}C$), and those with low temperature are barren land($30.2^{\circ}C$), area with trees and lawns($30.2^{\circ}C$), and white colored concrete roofs($34.9^{\circ}C$). These results show that accurate analysis of the thermal characteristics of surface fabrics is possible using UAV images. In future, it will be necessary to increase the usability of UAV images via comparison with in-situ data and linkage to satellite imagery.

THM analysis for an in situ experiment using FLAC3D-TOUGH2 and an artificial neural network

  • Kwon, Sangki;Lee, Changsoo
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.363-373
    • /
    • 2018
  • The evaluation of Thermo-Hydro-Mechanical (THM) coupling behavior is important for the development of underground space for various purposes. For a high-level radioactive waste repository excavated in a deep underground rock mass, the accurate prediction of the complex THM behavior is essential for the long-term safety and stability assessment. In order to develop reliable THM analysis techniques effectively, an international cooperation project, Development of Coupled models and their Validation against Experiments (DECOVALEX), was carried out. In DECOVALEX-2015 Task B2, the in situ THM experiment that was conducted at Horonobe Underground Research Laboratory(URL) by Japan Atomic Energy Agency (JAEA), was modeled by the research teams from the participating countries. In this study, a THM coupling technique that combined TOUGH2 and FLAC3D was developed and applied to the THM analysis for the in situ experiment, in which rock, buffer, backfill, sand, and heater were installed. With the assistance of an artificial neural network, the boundary conditions for the experiment could be adequately implemented in the modeling. The thermal, hydraulic, and mechanical results from the modeling were compared with the measurements from the in situ THM experiment. The predicted buffer temperature from the THM modelling was about $10^{\circ}C$ higher than measurement near by the overpack. At the other locations far from the overpack, modelling predicted slightly lower temperature than measurement. Even though the magnitude of pressure from the modeling was different from the measurements, the general trends of the variation with time were found to be similar.

Fabrication of Polypyrrole Deposited Poly (vinyl alcohol) Nanofiber Webs by Dip-coating and In situ Polymerization and their Application to Textile Electrode Sensors (Polypyrrole을 증착시킨 Poly(vinyl alcohol) 나노섬유 제조 및 전극용 텍스타일 센서로의 활용 가능성 탐색 -딥 코팅과 현장중합 증착 방식을 중심으로-)

  • Yang, Hyukjoo;Kim, Jaehyun;Lee, Seungsin;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.22 no.3
    • /
    • pp.386-398
    • /
    • 2020
  • This study compared dip-coating and in situ polymerization methods for the development of nanofiber-based E-textile using polypyrrole. Nanofiber webs were fabricated by electrospinning an aqueous poly (vinyl alcohol) (PVA) solution. Subsequently, the PVA nanofiber web underwent thermal treatment to improve water resistance. Dip-coating and in situ polymerization methods were used to deposit polypyrrole on the surfaces of the nanofiber web. An FE-SEM analysis was also conducted to examine specimen surface characteristics along with EDS and FT-IR that analyzed the chemical bonding between polypyrrole and specimens. The line resistance and sheet resistance of the treated specimens were measured. Finally, an electrocardiogram (ECG) was measured with textile sensors made of the polypyrrole-deposited PVA nanofiber webs. The polypyrrole-deposited PVA nanofiber webs fabricated by dip-coating dissolved in the dip-coating solution and indicated damage to the nanofibers. However, in the case of in situ polymerization, polypyrrole nanoparticles were deposited on the surface and inter-web structure of the PVA nanofiber web. The resistance measurements indicated that polypyrrole-deposited PVA nanofiber webs fabricated by in situ polymerization with an average sheet resistance of 5.3 k(Ω/□). Polypyrrole-deposited PVA nanofiber webs fabricated by dip-coating showed an average sheet resistance of 57.3 k(Ω/□). Polypyrrole-deposited PVA nanofibers fabricated by in situ polymerization showed a lower line and sheet resistance; in addition, they detected the electrical activity of the heart during ECG measurements. The electrodes made from polypyrrole-deposited PVA nanofiber webs by in situ polymerization showed the best performance for sensing ECG signals among the evaluated specimens.

A Novel Method for In Situ Stress Measurement by Cryogenic Thermal Cracking - Concept Theory and Numerical Simulation (저온 열균열 현상을 이용한 초기 응력 측정법 - 개념, 이론 및 수치해석)

  • Ryu, Chang-Ha;Ryu, Dong-Woo;Choi, Byung-Hee;Synn, Dong-Ho;Loui, John P.
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.343-354
    • /
    • 2008
  • A new method is suggested herein to measure the virgin earth stresses by means of a borehole. This novel concept is basically a combination of borehole stress relieving and borehole fracturing techniques. The destressing of the borehole is achieved by means of inducing thermal tensile stresses at the borehole periphery by using a cryogenic fluid such as Liquid Nitrogen($LN_2$). The borehole wall eventually develops fractures when the induced thermal stresses exceed the existing compressive stresses at the borehole periphery in addition to the tensile strength of the rock. The above concept is theoretically analyzed for its potential applicability to interpret in situ stress levels from the tensile fracture stresses and the corresponding borehole wall temperatures. Coupled thermo-mechanical numerical simulations are also conducted using FLAC3D, with thermal option, to check the validity of the proposed techniques. From the preliminary theoretical and numerical analysis, the method suggested for the measurement of in situ stresses appears to be capable of accurate estimation of the virgin stresses by monitoring tensile crack formation at a borehole wall and recording the wall temperatures at the time of crack initiation.

Development of an Electric Circuit Transient Analogy Model in a Vertical Closed Loop Ground Heat Exchanger (수직밀폐형 지중열교환기의 회로 과도해석 상사모델 개발)

  • Kim, Won-Uk;Park, Hong-Hee;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.306-314
    • /
    • 2012
  • Several numerical or analytical models have been proposed to analyze the thermal response of vertical ground heat exchangers (GHEX). However, most models are valid only after several hours of operation since they neglect the heat capacity of the borehole. Recently, the short time response of the GHEX became important in system simulation to improve efficiency. In this paper, a simple new method to evaluate the short time response of the GHEX by using an analogy model of electric circuit transient analysis was presented. The new transient heat exchanger model adopting the concept of thermal capacitance of the borehole as well as the steady-state thermal resistance showed the transient thermal resistance of the borehole. The model was validated by in-situ thermal response test and then compared with the DST model of the TRNSYS program.

Comparison of Land Surface Temperatures Derived from Surface Emissivity with Urban Heat Island Effect (지표 방사율에 의한 지표온도와 도시열섬효과 비교)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.4
    • /
    • pp.219-227
    • /
    • 2009
  • Because of urban development and changed land cover types, It is very important to acquire pixel unit of land surface temperature(LST) information when the heat island effect(HIE) of regional area are investigated. The brightness temperature observed by satellite is very useful for assessing the pixel unit of LST distributions for the analysis of thermal environment problems of urban areas. Also, satellite land cover data are very useful to our understanding of surface conditions of study areas. In this study, brightness temperature information of Landsat TM thermal channel was analyzed and compared with land cover information of Jeon-ju city. The atmospheric correction of TM thermal channel carried out to explain for compared LST long term monitoring errors. However, simple estimation and evaluation methods to find a physical relationship between LST from satellite images and in-situ data are compared with reference channel emissivity.

Construction of Ground Effective Thermal Conductivity Database for Design of Closed-Loop Ground Heat Exchangers (밀폐형 지중열교환기 설계를 위한 지중 유효열전도도 데이터베이스 구축)

  • Choi, Jae-Ho;Sohn, Byong-Hu;Lim, Hyo-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.776-781
    • /
    • 2008
  • A ground heat exchanger in a GSHP system is an important unit that determines the thermal performance of a system and its initial cost. The Size and performance of this heat exchanger is highly dependent on the thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This paper is part of a research project aiming at constructing a database of these site-specific properties, especially ground effective thermal conductivity. The objective was to develop and evaluation method, and to provide this knowledge to design engineers. To achieve these goals, thermal response tests were conducted using a testing device at nearly 150 locations in Korea. The in-situ thermal response is the temperature development over time when a known heating load imposed, e.g. by circulating a heat carrier fluid through the test exchangers. The line-source model was then applied to the response test data because of its simplicity. From the data analysis, the range of ground effective thermal conductivity at various sites is $1.5{\sim}4.0\;W$/mK. The results also show that the ground effective thermal conductivity varies with grouting materials as well as regional geological conditions and groundwater flow.

  • PDF