• 제목/요약/키워드: in situ thermal analysis

검색결과 122건 처리시간 0.022초

Preparation and Properties of Crosslinkable Waterborne Polyurethanes Containing Aminoplast(I)

  • Kwon Ji-Yun;Kim Han-Do
    • Macromolecular Research
    • /
    • 제14권3호
    • /
    • pp.373-382
    • /
    • 2006
  • A series of crosslinkable, waterborne polyurethanes (I-WBPUs) were prepared by in-situ polymerization using isophorone diisocyanate (IPDI)/poly(tetramethylene oxide) glycol (PTMG, $M_n$=2,000)/dimethylol propionic acid (DMPA)/ethylene diamine (EDA)/triethylamine (TEA)/aminoplast[hexakis(methoxymethyl)melamine (HMMM)] as a crosslinking agent. Typical crosslinkable, waterborne polyurethanes (B-WBPUs) blended from WBPU dispersion and aqueous HMMM solution was also prepared to compare with the I-WBPUs. The crosslinking reaction between WBPU and HMMM was verified using FTIR and XPS analysis. The effect of the HMMM contents on the dynamic mechanical thermal, thermal, mechanical, and adhesion properties of the I-WBPU and B-WBPU films were investigated. The storage modulus(E'), glass transition temperatures of the soft segment ($T_{gs}$) and the amorphous regions of higher order ($T_{gh}$), melting temperature ($T_m$), integral procedural decomposition temperature (IPDT), residual weight, $T_{10%}$ and $T_{50%}$ (the temperature where 10 and 50% weight loss occurred), tensile strength, initial modulus, hardness, and adhesive strength of both I-WBPU and B-WBPU systems increased with increasing HMMM content. However, these properties of the I-WBPU system were higher than those of the B-WBPU system at the same HMMM content. These results confirmed the in-situ polymerization used in this study to be a more effective method to improve the properties of the WBPU materials compared to the simple blending process.

접선 연소식 보일러의 최종 과열기 열부하 분포 및 튜브 온도 예측에 관한 연구 (Prediction of Thermal Load Distribution and Temperature of the Superheater in a Tangentially Fired Boiler)

  • 박호영;서상일
    • 설비공학논문집
    • /
    • 제20권7호
    • /
    • pp.478-485
    • /
    • 2008
  • The extreme steam temperature deviation experienced in the superheater of a tangentially fired boiler can seriously affect its economic and safe operation. This temperature deviation is one of the main causes of boiler tube failures. The steam temperature deviation is mainly due to the thermal load deviation in the lateral direction of the superheater. The thermal load deviation consists of several causes. One of the causes is the non-uniform heat flow distribution of burnt gas on the superheater tube system. This distribution is very difficult to measure in situ using direct experimental techniques. So, we need thermal load model to estimate the tube temperature. In this paper, we propose a thermal load distribution model by using CFD analysis and plant data. We successfully predict the tube temperature and the steam flow rate in a final superheater system from the thermal load model and one dimensional heat-flow system analysis. The proposed model and analysis method would be valuable in preventing the frequent tube failure of the final superheater tubes.

음식물류 폐기물의 혐기성 수소 발효 시 열처리에 따른 성능 및 미생물 특성 평가 (Performance and Microbial Characteristics of Bio-hydrogen Production from Food Waste with Thermal Pre-treatment)

  • 이채영;최재민
    • 한국수소및신에너지학회논문집
    • /
    • 제25권1호
    • /
    • pp.11-18
    • /
    • 2014
  • This study was conducted to investigate the effect of thermal pre-treatment on bio-hydrogen from food waste. Two continuous reactors operated and VFAs(volatile fatty acids) production and microbial communities were analyzed. The average hydrogen yield was 0.50 and 0.33mol $H_2/mol$ $hexose_{added}$ in thermally treated food added reactor(R1) and control(R2), respectively. Butyrate concentration was similarly 7,500mg/L in both reactors, but two times higher lactate concentration was observed in R2(3,800mg/L). The results of FISH(fluorescence in situ hybridization) showed that the relative microorganism to hydrogen producing bacteria was 78 and 27% in R1 and R2, respectively.

UAV 열적외 영상을 활용한 피복재질별 표면온도 특성 분석 (Analysis of Surface Temperature Characteristics by Land Surface Fabrics Using UAV TIR Images)

  • 송봉근;김경아;서경호;이승원;박경훈
    • 한국지리정보학회지
    • /
    • 제21권3호
    • /
    • pp.162-175
    • /
    • 2018
  • 본 연구는 도시 열환경 문제를 개선하기 위해 UAV 영상 표면온도 자료를 이용하여 피복재질별 표면온도 특성을 분석하였다. 그리고 UAV 영상 표면온도를 유사한 시기에 측정된 현장 실측 표면온도와 비교하였다. UAV 영상과 실측 표면온도와 비교한 결과, 가장 큰 차이를 보이는 피복재질은 회색 콘크리트 지붕 재질로 약 $7.8^{\circ}C$로 나타났다. 우레탄은 $0.3^{\circ}C$ 차이로 가장 적었다. 산점도를 분석한 결과 설명력이 63.75%로 상관성이 높은 것으로 분석되었다. 표면온도가 가장 높은 재질은 금속지붕으로 $48.9^{\circ}C$로 나타났고, 우레탄($43.4^{\circ}C$), 회색 콘크리트 지붕($42.9^{\circ}C$) 순이었다. 표면온도가 낮은 재질은 나지($30.2^{\circ}C$), 수목 및 잔디($30.2^{\circ}C$), 흰색 콘크리트 지붕($34.9^{\circ}C$)이었다. UAV 영상 표면온도 자료는 피복재질의 열적특성을 정밀하게 분석 가능하였다. 향후, 실측자료와의 비교를 통해 UAV 영상의 정확성 검 보정과 위성영상과 연계하여 UAV 영상 자료의 활용성을 확대할 필요가 있다.

THM analysis for an in situ experiment using FLAC3D-TOUGH2 and an artificial neural network

  • Kwon, Sangki;Lee, Changsoo
    • Geomechanics and Engineering
    • /
    • 제16권4호
    • /
    • pp.363-373
    • /
    • 2018
  • The evaluation of Thermo-Hydro-Mechanical (THM) coupling behavior is important for the development of underground space for various purposes. For a high-level radioactive waste repository excavated in a deep underground rock mass, the accurate prediction of the complex THM behavior is essential for the long-term safety and stability assessment. In order to develop reliable THM analysis techniques effectively, an international cooperation project, Development of Coupled models and their Validation against Experiments (DECOVALEX), was carried out. In DECOVALEX-2015 Task B2, the in situ THM experiment that was conducted at Horonobe Underground Research Laboratory(URL) by Japan Atomic Energy Agency (JAEA), was modeled by the research teams from the participating countries. In this study, a THM coupling technique that combined TOUGH2 and FLAC3D was developed and applied to the THM analysis for the in situ experiment, in which rock, buffer, backfill, sand, and heater were installed. With the assistance of an artificial neural network, the boundary conditions for the experiment could be adequately implemented in the modeling. The thermal, hydraulic, and mechanical results from the modeling were compared with the measurements from the in situ THM experiment. The predicted buffer temperature from the THM modelling was about $10^{\circ}C$ higher than measurement near by the overpack. At the other locations far from the overpack, modelling predicted slightly lower temperature than measurement. Even though the magnitude of pressure from the modeling was different from the measurements, the general trends of the variation with time were found to be similar.

Polypyrrole을 증착시킨 Poly(vinyl alcohol) 나노섬유 제조 및 전극용 텍스타일 센서로의 활용 가능성 탐색 -딥 코팅과 현장중합 증착 방식을 중심으로- (Fabrication of Polypyrrole Deposited Poly (vinyl alcohol) Nanofiber Webs by Dip-coating and In situ Polymerization and their Application to Textile Electrode Sensors)

  • 양혁주;김재현;이승신;조길수
    • 한국의류산업학회지
    • /
    • 제22권3호
    • /
    • pp.386-398
    • /
    • 2020
  • This study compared dip-coating and in situ polymerization methods for the development of nanofiber-based E-textile using polypyrrole. Nanofiber webs were fabricated by electrospinning an aqueous poly (vinyl alcohol) (PVA) solution. Subsequently, the PVA nanofiber web underwent thermal treatment to improve water resistance. Dip-coating and in situ polymerization methods were used to deposit polypyrrole on the surfaces of the nanofiber web. An FE-SEM analysis was also conducted to examine specimen surface characteristics along with EDS and FT-IR that analyzed the chemical bonding between polypyrrole and specimens. The line resistance and sheet resistance of the treated specimens were measured. Finally, an electrocardiogram (ECG) was measured with textile sensors made of the polypyrrole-deposited PVA nanofiber webs. The polypyrrole-deposited PVA nanofiber webs fabricated by dip-coating dissolved in the dip-coating solution and indicated damage to the nanofibers. However, in the case of in situ polymerization, polypyrrole nanoparticles were deposited on the surface and inter-web structure of the PVA nanofiber web. The resistance measurements indicated that polypyrrole-deposited PVA nanofiber webs fabricated by in situ polymerization with an average sheet resistance of 5.3 k(Ω/□). Polypyrrole-deposited PVA nanofiber webs fabricated by dip-coating showed an average sheet resistance of 57.3 k(Ω/□). Polypyrrole-deposited PVA nanofibers fabricated by in situ polymerization showed a lower line and sheet resistance; in addition, they detected the electrical activity of the heart during ECG measurements. The electrodes made from polypyrrole-deposited PVA nanofiber webs by in situ polymerization showed the best performance for sensing ECG signals among the evaluated specimens.

저온 열균열 현상을 이용한 초기 응력 측정법 - 개념, 이론 및 수치해석 (A Novel Method for In Situ Stress Measurement by Cryogenic Thermal Cracking - Concept Theory and Numerical Simulation)

  • 류창하;류동우;최병희;신중호
    • 터널과지하공간
    • /
    • 제18권5호
    • /
    • pp.343-354
    • /
    • 2008
  • 시추공을 이용한 초기응력 측정을 위한 새로운 방법을 제안하였다. 이 새로운 개념의 측정법은 기본적으로 응력 해방과 파쇄 기술을 결합한 방법이다. 액화질소와 같은 극저온 액체를 이용하여 시추공 주변의 인장 열응력을 유도하여 시추공 주변의 응력을 해방시킬 수 있다. 종국에는 시추공 주변의 인장 강도가 암반의 인장 강도에 초기 지압으로 존재하는 압축 응력의 합을 초과할 때 시추공벽에 균열을 발생시킨다. 이와 같은 개념을 인장 응력으로부터 초기 응력 수준을 평가하는데 적용하기 위한 이론적 분석을 수행하였다. 또한, 제안한 방법의 유효성을 검토하기 위해 FLAC3D를 이용한 열-역학 상호작용 연속체 해석을 수행하였다. 사전 이론적 검토 및 수치해석으로부터 저온 열균열 발생 현상을 이용한 초기 응력 측정법이 시추공벽에서의 인장 균열 형성을 감시하고 시추공벽에서의 균열 개시 시점의 온도를 기록함으로써 초기 응력을 정밀하게 측정할 수 있음을 확인하였다.

수직밀폐형 지중열교환기의 회로 과도해석 상사모델 개발 (Development of an Electric Circuit Transient Analogy Model in a Vertical Closed Loop Ground Heat Exchanger)

  • 김원욱;박홍희;김용찬
    • 설비공학논문집
    • /
    • 제24권4호
    • /
    • pp.306-314
    • /
    • 2012
  • Several numerical or analytical models have been proposed to analyze the thermal response of vertical ground heat exchangers (GHEX). However, most models are valid only after several hours of operation since they neglect the heat capacity of the borehole. Recently, the short time response of the GHEX became important in system simulation to improve efficiency. In this paper, a simple new method to evaluate the short time response of the GHEX by using an analogy model of electric circuit transient analysis was presented. The new transient heat exchanger model adopting the concept of thermal capacitance of the borehole as well as the steady-state thermal resistance showed the transient thermal resistance of the borehole. The model was validated by in-situ thermal response test and then compared with the DST model of the TRNSYS program.

지표 방사율에 의한 지표온도와 도시열섬효과 비교 (Comparison of Land Surface Temperatures Derived from Surface Emissivity with Urban Heat Island Effect)

  • 정종철
    • 환경영향평가
    • /
    • 제18권4호
    • /
    • pp.219-227
    • /
    • 2009
  • Because of urban development and changed land cover types, It is very important to acquire pixel unit of land surface temperature(LST) information when the heat island effect(HIE) of regional area are investigated. The brightness temperature observed by satellite is very useful for assessing the pixel unit of LST distributions for the analysis of thermal environment problems of urban areas. Also, satellite land cover data are very useful to our understanding of surface conditions of study areas. In this study, brightness temperature information of Landsat TM thermal channel was analyzed and compared with land cover information of Jeon-ju city. The atmospheric correction of TM thermal channel carried out to explain for compared LST long term monitoring errors. However, simple estimation and evaluation methods to find a physical relationship between LST from satellite images and in-situ data are compared with reference channel emissivity.

밀폐형 지중열교환기 설계를 위한 지중 유효열전도도 데이터베이스 구축 (Construction of Ground Effective Thermal Conductivity Database for Design of Closed-Loop Ground Heat Exchangers)

  • 최재호;손병후;임효재
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.776-781
    • /
    • 2008
  • A ground heat exchanger in a GSHP system is an important unit that determines the thermal performance of a system and its initial cost. The Size and performance of this heat exchanger is highly dependent on the thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This paper is part of a research project aiming at constructing a database of these site-specific properties, especially ground effective thermal conductivity. The objective was to develop and evaluation method, and to provide this knowledge to design engineers. To achieve these goals, thermal response tests were conducted using a testing device at nearly 150 locations in Korea. The in-situ thermal response is the temperature development over time when a known heating load imposed, e.g. by circulating a heat carrier fluid through the test exchangers. The line-source model was then applied to the response test data because of its simplicity. From the data analysis, the range of ground effective thermal conductivity at various sites is $1.5{\sim}4.0\;W$/mK. The results also show that the ground effective thermal conductivity varies with grouting materials as well as regional geological conditions and groundwater flow.

  • PDF