• Title/Summary/Keyword: in situ temperature

Search Result 906, Processing Time 0.026 seconds

The process optimization of in-situ H$_2$ bake and GeH$_4$ clean in low temperature Si epitaxy using design of experiment (저온 Si계 에피 성장기술에서 실험계획법에 의한 in-situ H$_2$ bake 및 GeH$_4$ clean 공정 최적화)

  • 이경수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.54-58
    • /
    • 1994
  • H$_2$ bake and GeH$_4$ clean are used as a in-situ pre-clean method in low temperature Si based epitaxial growth technology using rapid thermal processing chemical vapor deposition (RTPCVD). In this paper, the H$_2$ bake and GeH$_4$ clean processes are optimized for low surface defect density using Taguchi method. In H$_2$ bake process, the epitaxial growth temperature affects dominantly on the surface defect density, and the next affecting factors are H$_2$ bake temperature and rinse time in de-ionised water. In GeH$_4$ clean process, GeH$_4$ clean temperature affects most strongly on the surface defect density, and the minor factor is GeH$_4$flow rate. The optimum process conditions predicted fly Taguchi method agree well with tile experimental data in both in-situ clean processes.

Application of In-situ CaCO3 Formation Method for Better Utilization of Recycled Fibers (2) - Comparison with CaCO3 Addition Method and Effects of Temperature - (고지의 효과적인 활용을 위한 in-situ 탄산칼슘 부착방식의 연구(2) - 탄산칼슘 첨가방식과 비교 및 반응온도에 따른 변화 -)

  • Lee, Min Woo;Lee, Young Ho;Jung, Jae Kwon;Seo, Yung Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.5
    • /
    • pp.27-34
    • /
    • 2014
  • In-situ $CaCO_3$ formation onto recycled wood pulp was studied to improve optical properties and ash attachment to the fiber furnish in papermaking. We controlled initial reaction temperature of in-situ $CaCO_3$ formation method from $30^{\circ}C$ to $50^{\circ}C$. It was found that the attachment of newly formed $CaCO_3$ to recycled fibers, old newspaper (ONP) in this case, was stronger than that of ground calcium carbonate (GCC, mean dia. $2.4{\mu}m$) addition case, but was not much different among those formed at different temperature. Morphologies of newly formed $CaCO_3$ were changed according to the reaction temperature. More aragonite shape was seen at higher temperature. In-situ $CaCO_3$ formation increased brightness and lowered ERIC value of ONP sheet greatly at the same level of ash contents when compared to GCC addition method, but gave equivalent ERIC and brightness when compared to those of the precipitated calcium carbonate (PCC) addition method. However, tensile strength of the handsheets of the in-situ $CaCO_3$ formation method were much greater than those of the PCC addition method.

Development of Method for In-situ Micro-Scale Observation of Stress Corrosion Cracking in High-Temperature Primary Water Environment (원전 고온 1차수 환경에서 응력부식균열의 실시간 마이크로 스케일 관찰 방법 개발)

  • Jung-Ho Shin;Jong-Yeon Lee;Sung-Woo Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.265-272
    • /
    • 2023
  • The aim of this study was to develop a new in-situ observation method and instrument in micro-scale to investigate the mechanism of stress corrosion cracking (SCC) initiation of Ni-base alloys in a high temperature water environment of pressurized water reactors (PWRs). A laser confocal microscope (LCM), an autoclave with diamond window view port, and a slow strain-rate tester with primary water circulation loop system were components of the instrument. Diamond window, one of the core components of the instrument, was selected based on its optical, chemical, and mechanical properties. LCM was used to observe the specimen in micro-scale, considering the experimental condition of a high-temperature primary water environment. Using in-situ method and instrument, it is possible to observe oxidation and deformation of specimen surface in micro-scale through the diamond window in a high-temperature primary water in real-time. The in-situ method and instrument developed in this work can be utilized to investigate effects of various factors on SCC initiation in a high-temperature water environment.

EO Performances of Flexible TN-LCD using in-situ Ultraviolet Exposure during Imidization of Polyimide on the Polymer Film

  • Moon, Hyun-Chan;Hwang, Jeoung-Yeon;Lee, Whee-Won;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.106-109
    • /
    • 2005
  • We have investigated the generation of pretilt angle for a nematic liquid crystal (NLC) alignment with in-situ photoalignment method on polyimide (PI) surfaces using polymer films. Especially, we studied in-situ photoalignment changing heating temperature from $50^{\circ}C\;to\;120^{\circ}C$ on the polymer film. The LC aligning capabilities and pretilt angle on the polymer substrates were better than those on the glass substrate using in-situ photoalignment method. It is considered that this increase in pretilt angle may be attributed to the roughness of the micro-groove substrate induced by the in-situ photoalignment. As temperature of heated subtrate and UV exposure time increase, pretilt angle of the cell used polymer film increased. It is considered that the heating temperature of substrate is attributed to generate pretilt angle. Also, electro-optical performances of the in-situ photoaligned TN cell using the polymer substrate are almost the same as that of the TN cell using the glass substrate.

Analysis of Lake Water Temperature and Seasonal Stratification in the Han River System from Time-Series of Landsat Images (Landsat 시계열 영상을 이용한 한강 수계 호수 수온과 계절적 성충 현상 분석)

  • Han, Hyang-Sun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.253-271
    • /
    • 2005
  • We have analyzed surface water temperature and seasonal stratification of lakes in the Han river system using time-series Landsat images and in situ measurement data. Using NASA equation, at-satellite temperature is derived from 29 Landsat-5 TM and Landsat-7 ETM+ images obtained from 1994 to 2004, and was compared with in situ surface temperature on river-type dam lakes such as Paro, Chuncheon, Euiam, Chongpyong, Paldang, and with 10m-depth temperature on lake-type dam lake Soyang. Although the in situ temperature at the time of satellite data acquisition was interpolated from monthly measurements, the number of images with standard deviation of temperature difference (at-satellite temperature - in situ interpolated temperature) less than $2^{\circ}C$ was 24 on which a novel statistical atmospheric correction could be applied. The correlation coefficient at Lake Soyang was 0.915 (0.950 after correction) and 0.951-0.980 (0.979-0.997 after correction) at other lakes. This high correlation implies that there exist a mixed layer in the shallow river-like dam lakes due to physical mixing from continuous influx and efflux, and the daily and hourly temperature change is not fluctuating. At Lake Soyang, an anomalous temperature difference was observed from April to July where at-satellite temperature is $3-5^{\circ}C$ higher than in situ interpolated temperature. Located in the uppermost part of the Han river system and its influx is governed only by natural precipitation, Lake Soyang develops stratification during this time with rising sun elevation and no physical mixture from influx in this relatively dry season of the year.

In-situ P-doped LPCVD Poly Si Films as the Electrodes of Pressure Sensor for High Temperature Applications (고온용 압력센서 응용을 위한 in-situ 인(P)-도핑 LPCVD Poly Si 전극)

  • Choi, Kyeong-Keun;Kee, Jong;Lee, Jeong-Yoon;Kang, Moon Sik
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.438-444
    • /
    • 2017
  • In this paper, we focus on optimization of the in-situ phosphorous (P) doping of low-pressure chemical vapor deposited (LPCVD) poly Si resistors for obtaining near-zero temperature coefficient of resistance (TCR) at temperature range from 25 to $600^{\circ}C$. The deposited poly Si films were annealed by rapid thermal anneal (RTA) process at the temperature range from 900 to $1000^{\circ}C$ for 90s in nitrogen ambient to relieve intrinsic stress and decrease the TCR in the poly Si layer and get the Ohmic contact. After the RTA process, a roughness of the thin film was slightly changed but the grain size and crystallinity of the thin film with the increase in anneal temperature. The film annealed at $1,000^{\circ}C$ showed the behavior of Schottky contact and had dislocations in the films. Ohmic contact and TCR of $334.4{\pm}8.2$ (ppm/K) within 4 inch wafer were obtained in the measuring temperature range of 25 to $600^{\circ}C$ for the optimized 200 nm thick-poly Si film with width/length of $20{\mu}m/1,800{\mu}m$. This shows the potential of in-situ P doped LPCVD poly Si as a resistor for pressure sensor in harsh environment applications.

Synthesis Behavior of Ti-25.0~37.5at%Si Powders by In situ Thermal Analysis during Mechanical Alloying (기계적 합금화과정에서의 in situ 열분석에 의한 Ti-25.0~37.5at%Si 분말의 합성거동)

  • Byun Chang Sop;Hyun Chang Yong;Kim Dong Kwan
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.305-309
    • /
    • 2004
  • Mechanical alloying (MA) of Ti-25.0~37.5at%Si powders was carried out in a high-energy ball mill, and in situ thermal analysis was also made during MA. In order to classify the synthesis behavior of the powders with respect to at%Si, the synthesis behavior during MA was investigated by in situ thermal analysis and X-ray diffraction (XRD). In situ thermal analysis curves and XRD patterns of Ti-25.0~26.1at%Si powders showed that there were no peaks during MA, indicating $Ti_{5}$ $Si_3$ was synthesised by a slow reaction of solid state diffusion. Those of Ti-27.1~37.5at%Si powders, however, showed that there were exothermic peaks during MA, indicating $_Ti{5}$ $Si_3$ and$ Ti_3$Si phase formation by a rapid exothermic reaction of self-propagating high-temperature synthesis (SHS). For Ti-27.1~37.5at%Si powders, the critical milling times for SHS decreased from 38.1 to 18.5 min and the temperature rise, ΔT (= peak temperature - onset temperature) increased form $19.5^{\circ}C$ to $26.7^{\circ}C$ as at%Si increased. The critical composition of Si for SHS reaction was found to be 27.1at% and the critical value of the negative heat of formation of Ti-27.1at%Si to be -1.32 kJ/g.

Synthesis Behavior of Ti-50.0 ~ 66.7at%Si Powders by In situ Thermal Analysis during Mechanical Alloying (기계적 합금화과정에서의 in situ 열분석에 의한 Ti-50.0~66.7at%Si 분말의 합성거동)

  • Byun Chang Sop;Lee Sang Ho;Lee Wonhee;Hyun Chang Yong;Kim Dong Kwan
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.310-314
    • /
    • 2004
  • Mechanical alloying (MA) of Ti-50.0~66.7at%Si powders was carried out in a high-energy ball mill, and in situ thermal analysis was also made during MA. In order to classify the synthesis behavior of the powders with respect to at%Si, the synthesis behavior during MA was investigated by in situ thermal analysis and X-ray diffraction (XRD). In situ thermal analysis curves and XRD patterns of Ti-50.0~59.6at%Si powders showed that there were exothermic peaks during MA, indicating TiSi, $TiS_2$, and $Ti_{5}$ $Si_4$ phase formation by a rapid exothermic reaction of self-propagating high-temperature synthesis (SHS). Those of Ti-59.8~66.7 at%Si powders, however, showed that there were no peaks during MA, indicating any Ti silicide was not synthesised until MA 240 min. For Ti-50.0~59.6at%Si powders, the critical milling times for SHS increased from 34.5 min to 89.5 min and the temperature rise, $\Delta$T (=peak temperature-onset temperature) decreased form $26.2^{\circ}C$ to $17.1^{\circ}C$ as at%Si increased. The critical composition of Si for SHS reaction was found to be 59.6at% and the critical value of the negative heat of formation of Ti-59.6at%Si to be -1.48 kJ/g.

In-Situ Measurement of Densification Behavior of Nano Cu Powders during Sintering (In-Situ 측정에 의한 나노 Cu 분말의 소결 공정 시 치밀화 거동)

  • Yoon, S.C.;Bok, C.H.;Kwak, E.J.;Rhee, C.K.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.3 s.93
    • /
    • pp.210-214
    • /
    • 2007
  • Manufacturing bulk nanostructured materials with least grain growth from initial powders is challenging because of the bottle neck of bottom-up methods using the conventional powder metallurgy via compaction and sintering. In the study, densification behavior of nano Cu powders during pressureless sintering was investigated using an in-situ optical dilatometer technique. The initial heating and steady temperature stages during the sintering of nano Cu powder compacts were observed. At the initial heating stage, the powder compact has many porosities and full densification needs high temperature and/or high pressure sintering. In the experimental analysis, changes in geometry and density were measured and discussed for optimal consolidation and densification by the in-situ optical dilatometer.

Technical Investigation into the In-situ Electron Backscatter Diffraction Analysis for the Recrystallization Study on Extra Low Carbon Steels

  • Kim, Ju-Heon;Kim, Dong-Ik;Kim, Jong Seok;Choi, Shi-Hoon;Yi, Kyung-Woo;Oh, Kyu Hwan
    • Applied Microscopy
    • /
    • v.43 no.2
    • /
    • pp.88-97
    • /
    • 2013
  • Technical investigation to figure out the problems arising during in-situ heating electron backscatter diffraction (EBSD) analysis inside scanning electron microscopy (SEM) was carried out. EBSD patterns were successfully acquired up to $830^{\circ}C$ without degradation of EBSD pattern quality in steels. Several technical problems such as image drift and surface microstructure pinning were taking place during in-situ experiments. Image drift problem was successfully prevented in constant current supplying mode. It was revealed that the surface pinning problem was resulted from the $TiO_2$ oxide particle formation during heating inside SEM chamber. Surface pinning phenomenon was fairly reduced by additional platinum and carbon multi-layer coating before in-situ heating experiment, furthermore was perfectly prevented by improvement of vacuum level of SEM chamber via leakage control. Plane view in-situ observation provides better understanding on the overall feature of recrystallization phenomena and cross sectional in-situ observation provides clearer understanding on the recrystallization mechanism.