• Title/Summary/Keyword: in situ measurements

Search Result 524, Processing Time 0.027 seconds

In-situ spectroscopic studies of SOFC cathode materials

  • Ju, Jong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.70.1-70.1
    • /
    • 2012
  • In-situ X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies of SOFC cathode materials will be discussed in this presentation. The mixed conducting perovskites (ABO3) containing rare and alkaline earth metals on the A-site and a transition metal on the B-site are commonly used as cathodes for solid oxide fuel cells (SOFC). However, the details of the oxygen reduction reaction are still not clearly understood. The information about the type of adsorbed oxygen species and their concentration is important for a mechanistic understanding of the oxygen incorporation into these cathode materials. XPS has been widely used for the analysis of adsorbed species and surface structure. However, the conventional XPS experiments have the severe drawback to operate at room temperature and with the sample under ultrahigh vacuum (UHV) conditions, which is far from the relevant conditions of SOFC operation. The disadvantages of conventional XPS can be overcome to a large extent with a "high pressure" XPS setup installed at the BESSY II synchrotron. It allows sample depth profiling over 2 nm without sputtering by variation of the excitation energy, and most importantly measurements under a residual gas pressure in the mbar range. It is also well known that the catalytic activity for the oxygen reduction is very sensitive to their electrical conductivity and oxygen nonstoichiometry. Although the electrical conductivity of perovskite oxides has been intensively studied as a function of temperature or oxygen partial pressure (Po2), in-situ measurements of the conductivity of these materials in contact with the electrolyte as a SOFC configuration have little been reported. In order to measure the in-plane conductivity of an electrode film on the electrolyte, a substrate with high resistance is required for excluding the leakage current of the substrate. It is also hardly possible to measure the conductivity of cracked thin film by electrical methods. In this study, we report the electrical conductivity of perovskite $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ (LSC) thin films on yttria-stabilized zirconia (YSZ) electrolyte quantitatively obtained by in-situ IR spectroscopy. This method enables a reliable measurement of the electronic conductivity of the electrodes as part of the SOFC configuration regardless of leakage current to the substrate and cracks in the film.

  • PDF

Comparison of Rock Young's Moduli Determined from Various Measurement Methods (다양한 시험법으로 규명된 암반 탄성계수 비교)

  • Ryu Kuen-Hwan;Chang Chan-Dong
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.1-14
    • /
    • 2006
  • Various measurements were carried out to estimate the modulus of deformation in two dominant rock types in Korea: granite and gneiss. Four most commonly used methods were utilized: Goodman jack tests, PS well logging, laboratory ultrasonic tests and laboratory uniaxial loading tests. Laboratory static and dynamic Young's moduli depend on the magnitude of the applied axial stress, range of Sequency used for measurement and the loading/unloading condition. As the laboratory measurement condition approaches to that in situ, the resultant moduli also appear to be comparable to that in situ. This suggests that the simulation of in situ stress condition is important when the modulus of rock is determined in the laboratory Dynamic Young's modulus is generally higher than static Young's modulus because of (micro)crack behavior in response to the stress, different range of frequency used for measurements, and the effect of the amplitude of deformation. Understanding of the relations in moduli from different measurement methods will help estimate appropriate in situ values.

Estimating Photosynthetically Available Radiation from Geostationary Ocean Color Imager (GOCI) Data (정지궤도 해양관측위성 (GOCI) 자료를 이용한 광합성 유효광량 추정)

  • Kim, Jihye;Yang, Hyun;Choi, Jong-Kuk;Moon, Jeong-Eon;Frouin, Robert
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.253-262
    • /
    • 2016
  • Here, we estimated daily Photosynthetically Available Radiation (PAR) from Geostationary Ocean Colour Imager (GOCI) and compared it with daily PAR derived from polar-orbiting MODIS images. GOCI-based PAR was also validated with in-situ measurements from ocean research station, Socheongcho. GOCI PAR showed similar patterns with in-situ measurements for both the clear-sky and cloudy day, whereas MODIS PAR showed irregular patterns at cloudy conditions in some areas where PAR could not be derived due to the clouds of sunglint. GOCI PAR had shown a constant difference with the in-situ measurements, which was corrected using the in-situ measurements obtained on the days of clear-sky conditions at Socheongcho station. After the corrections, GOCI PAR showed a good agreement excepting on the days with so thick cloud that the sensor was optically saturated. This study revealed that GOCI can estimate effectively the daily PAR with its advantages of acquiring data more frequently, eight times a day at an hourly interval in daytime, than other polar orbit ocean colour satellites, which can reduce the uncertainties induced by the existence and movement of the cloud and insufficient images to map the daily PAR at the seas around Korean peninsula.

Investigation of an in-situ measurement method for Sound Strength in concert halls (콘서트홀의 Sound Strength 현장 측정법 고찰)

  • Jeong, Choong-Il;You, Jin;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.987-990
    • /
    • 2007
  • The accuracy of sound strength (G) measurement method in ISO 3382 has been questioned. One of the main reason is the difficulty in measuring a reference sound level in an anechoic chamber with the same set-up which was applied for the actual hall measurements. In the present paper, an in-situ measurement method for G was proposed by investigating the present G measurement method shown in ISO 3382. In addition, the sound radiation characteristics of typical omnidirectional loudspeakers were investigated and Phi (O) of auto correlation function (ACF) parameters was also calculated from an actual music excerpt to characterize the sound energy distribution in concert halls.

  • PDF

Physical Property Change of the Gapless Semiconductor $PbPdO_2$ Thin Film by Ex-situ Annealing

  • Choo, S.M.;Park, S.M.;Lee, K.J.;Jo, Y.H.;Park, G.S.;Jung, M.H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.371-372
    • /
    • 2012
  • We have studied lead-based gapless semiconductors, $PbPdO_2$, which is very sensitive to external parameters such as temperature, pressure, electric field, etc[1]. We have fabricated pure $PbPdO_2$, Co- and Mn-doped $PbPdO_2$ thin films using the pulsed laser deposition. Because of the volatile element of Pb, it is very difficult to grow the films. Note that in case of $MgB_2$, Mg is also volatile element. So in order to enhance the quality of $MgB_2$, some experiments are carried out in annealing with Mg-rich atmosphere [2]. This annealing process with volatile element plays an important role in making smooth surface. Thus, we applied such process to our studies of $PbPdO_2$ thin films. As a result, we found the optimal condition of ex-situ annealing temperature ${\sim}650^{\circ}C$ and time ~12 hrs. The ex-situ annealing brought the extreme change of surface morphology of thin films. After ex-situ annealing with PbO-rich atmosphere, the grain size of thin film was almost 100 times enlarged for all the thin films and also the PbO impurity phase was smeared out. And from X-ray diffraction measurements, we determined highly crystallized phases after annealing. So, we measured electrical and magnetic properties. Because of reduced grain boundary, the resistivity of ex-situ annealed samples changed smaller than no ex-situ sample. And the carrier densities of thin films were decreased with ex-situ annealing time. In this case, oxygen vacancies were removed by ex-situ annealing. Furthermore, we will discuss the transport and magnetic properties in pure $PbPdO_2$, Co- and Mn-doped $PbPdO_2$ thin films in detail.

  • PDF

Real-time X-ray Scattering as a Nanostructure Probe for Organic Photovoltaic Thin Films

  • Lee, Hyeon-Hwi;Kim, Hyo-Jeong;Kim, Jang-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.181-181
    • /
    • 2013
  • Recently, nanostructure and the molecular orientation of organic thin films have been largely paid attention due to its importance in organic electronics such as organic thin film transistors (OTFTs), organic light emitting diodes (OLEDs), and organic photovoltaics (OPVs). Among various methods, the diffraction and scattering techniques based on synchrotron x-rays have shown powerful results in organic thin film systems. In this work, we introduce the in-situ annealing system installed at PLS-II (Pohang Light Source II) for organic thin films by simultaneously conducting various x-ray scattering measurements of x-ray reflectivity, conventional x-ray scattering, grazing incidence wide angle x-ray scattering (GI-WAXS) and so on. Using the in-situ measurement, we could obtain real time variation of nanostructure as well as molecular orientation during thermal annealing in metal-phthalocyanine thin films. The variation of surface and interface also could be simultaneously investigated by the x-ray reflectivity measurement.

  • PDF

Fabrication of Aluminum/Aluminum Nitride Composites by Reactive Mechanical Alloying

  • Yu, Seung-Hoon;Shin, Kwang-Seon
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1294-1295
    • /
    • 2006
  • Various reactions and the in-situ formation of new phases can occur during the mechanical alloying process. In the present study, Al powders were strengthened by AlN, using the in-situ processing technique during mechanical alloying. Differential thermal analysis and X-ray diffraction studies were carried out in order to examine the formation behavior of AlN. It was found that the precursors of AlN were formed in the Al powders and transformed to AlN at temperatures above $600^{\circ}C$. The hot extrusion process was utilized to consolidate the composite powders. The microstructure of the extrusions was examined by SEM and TEM. In order to investigate the mechanical properties of the extrusions, compression tests and hardness measurements were carried out. It was found that the mechanical properties and the thermal stability of the Al/AlN composites were significantly greater than those of conventional Al matrix composites.

  • PDF

Using a Micro-flown device to measure acoustical properties of green roof systems (Micro-flown 장비를 이용한 옥상녹화재료 음향 물성치 실험)

  • Yang, Hong-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.870-873
    • /
    • 2014
  • Green roof systems has widely been used on rooftop of buildings by considering environmental benefits in aspects of bio-diversity, storm-water runoff as well as noise reduction. To predict noise reduction effect by green roof systems, it is necessary to measure in-situ acoustical properties of the components by devices enabling in-situ measurements. In this study, Micro-flown, which is the state of the arts device to measure in-situ normalized impedance and absorption coefficient has been used to measure acoustical properties of green roof materials according to different water saturation condition in the materials.

  • PDF

In-situ Measurements of the Stress in $TiO_2$ Thin Films ($TiO_2$ 박막의 두께에 따른 실시간 스트레스 측정에 관한 연구)

  • 한성홍
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.260-265
    • /
    • 1993
  • An in-situ stress measurement interferometer is constructed and used to measure the intrinsic stress in Ti$O_2$ thin films during their growth by ion-assisted deposition. It is found that the stress increases with the momentum transferred by the ion beam to the growing film and is fairly well agreed with Windischmann's model. The variation of the stress with thickness is qualitatively explained in terms of the balance between the compressive stress produced by the ion beam and the surface diffusion determined by the surface temperature.

  • PDF