• Title/Summary/Keyword: in situ investigations

Search Result 76, Processing Time 0.029 seconds

Deep Hydrochemical Investigations Using a Borehole Drilled in Granite in Wonju, South Korea

  • Kim, Eungyeong;Cho, Su Bin;Kihm, You Hong;Hyun, Sung Pil
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.517-532
    • /
    • 2021
  • Safe geological disposal of spent nuclear fuel (SNF) requires knowledge of the deep hydrochemical characteristics of the repository site. Here, we conducted a set of deep hydrochemical investigations using a 750-m borehole drilled in a model granite system in Wonju, South Korea. A closed investigation system consisting of a double-packer, Waterra pump, flow cell, and water-quality measurement unit was used for in situ water quality measurements and subsequent groundwater sampling. We managed the drilling water labeled with a fluorescein dye using a recycling system that reuses the water discharged from the borehole. We selected the test depths based on the dye concentrations, outflow water quality parameters, borehole logging, and visual inspection of the rock cores. The groundwater pumped up to the surface flowed into the flow cell, where the in situ water quality parameters were measured, and it was then collected for further laboratory measurements. Atmospheric contact was minimized during the entire process. Before hydrochemical measurements and sample collection, pumping was performed to purge the remnant drilling water. This study on a model borehole can serve as a reference for the future development of deep hydrochemical investigation procedures and techniques for siting processes of SNF repositories.

In situ Synchrotron X-ray Techniques for Structural Investigation of Electrode Materials for Li-ion Battery (방사광 X-선을 이용한 리튬이온전지 소재의 실시간 구조 분석 연구)

  • Han, Daseul;Nam, Kyung-Wan
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.402-416
    • /
    • 2019
  • The development of next-generation secondary batteries, including lithium-ion batteries (LIB), requires performance enhancements such as high energy/high power density, low cost, long life, and excellent safety. The discovery of new materials with such requirements is a challenging and time-consuming process with great difficulty. To pursue this challenging endeavor, it is pivotal to understand the structure and interface of electrode materials in a multiscale level at the atomic, molecular, macro-scale during charging / discharging. In this regard, various advanced material characterization tools, including the first-principle calculation, high-resolution electron microscopy, and synchrotron-based X-ray techniques, have been actively employed to understand the charge storage- and degradation-mechanisms of various electrode materials. In this article, we introduce and review recent advances in in-situ synchrotron-based x-ray techniques to study electrode materials for LIBs during thermal degradation and charging/discharging. We show that the fundamental understanding of the structure and interface of the battery materials gained through these advanced in-situ investigations provides valuable insight into designing next-generation electrode materials with significantly improved performance in terms of high energy/high power density, low cost, long life, and excellent safety.

Capacitive Sensor for in situ Measurement of Deterioration of Car Engine Oil (자동차 엔진오일 열화상태 in situ 측정용 전기용량 센서)

  • Lee, R.D.;Kim, H.J.;Semenov, Yu. P.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.266-272
    • /
    • 2001
  • A coil-type capacitive sensor on which the deterioration of the car engine oil can be in situ measured, has been developed. The sensor was designed to get over 10 pF at the limited space on the drain hole of the oil pan. The design factors for stable capacitance measurement such as coil diameter and winding condition, materials and configuration of the coil former, and shielding method, etc., were known by both computer simulation and experimental investigations. The dielectric properties measured by several sensors for an used sample oil were consisted within 0.25%. The sensor installed on the car having severe vibration, temperature and humidity fluctuation, even electromagnetic noise, has shown very distinguishable results.

  • PDF

Electrokinetic Extraction of Pollutants from the Vicinity of Unregulated Landfill Site (동전기적 추출에 의한 비위생매립지 주변 오염지반의 정화)

  • Lee, MyungHo;Chung, Ha-Ik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.2
    • /
    • pp.17-22
    • /
    • 2006
  • This paper presents preliminary field investigations on the electrokinetic (EK) remediation coupled with permeable reactive barrier (PRB) system. unregulated and old-fashioned landfills are one of the primary contributors to various contaminated soil problems. In-situ EK remediation technology has been successfully applied to the environs of unregulated landfill site, located in Kyeong-Ki province, Korea. Atomizing slag was adopted as a PRB reactive material for the remediation of groundwater contaminated with inorganic and/or organic substances. From the preliminary investigations, the coupled technology of EK with PRB system would be effecitve to remeidate contaminated grounds without the extraction of pollutants from subsurface due to the reactions between the reactive materials and contaminants.

  • PDF

Formulation of an alternate concrete mix for concrete filled GFRG panels

  • Nandan, Nithya;Renjith, R.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.217-223
    • /
    • 2017
  • Glass fiber reinforced gypsum panels (GFRG) are hollow panels made from modified gypsum plaster and reinforced with chopped glass fibers. The hollow cores of panels can be filled with in-situ concrete/reinforced concrete or insulation material to increase the structural strength or the thermal insulation, respectively. GFRG panels are unfilled when used as partition walls. As load bearing walls, the panels are filled with M 20 grade concrete (reinforced concrete filling) in order to resist the gravity and lateral loads. The study was conducted in two stages: First stage involves formulation of the alternate light weight mix by conducting experimental investigations to obtain the optimum combination of phosphogypsum and shredded thermocol. In the second stage the alternate mixes are filled in GFRG panels and experimental investigations are conducted to compare the performance against panels filled with conventional M 20 mix.

In situ investigations into mining-induced overburden failures in close multiple-seam longwall mining: A case study

  • Ning, Jianguo;Wang, Jun;Tan, Yunliang;Zhang, Lisheng;Bu, Tengteng
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.657-673
    • /
    • 2017
  • Preventing water seepage and inrush into mines where close multiple-seam longwall mining is practiced is a challenging issue in the coal-rich Ordos region, China. To better protect surface (or ground) water and safely extract coal from seams beneath an aquifer, it is necessary to determine the height of the mining-induced fractured zone in the overburden strata. In situ investigations were carried out in panels 20107 (seam No. $2-2^{upper}$) and 20307 (seam No. $2-2^{middle}$) in the Gaojialiang colliery, Shendong Coalfield, China. Longwall mining-induced strata movement and overburden failure were monitored in boreholes using digital panoramic imaging and a deep hole multi-position extensometer. Our results indicate that after mining of the 20107 working face, the overburden of the failure zone can be divided into seven rock groups. The first group lies above the immediate roof (12.9 m above the top of the coal seam), and falls into the gob after the mining. The strata of the second group to the fifth group form the fractured zone (12.9-102.04 m above the coal seam) and the continuous deformation zone extends from the fifth group to the ground surface. After mining Panel 20307, a gap forms between the fifth rock group and the continuous deformation zone, widening rapidly. Then, the lower portion of the continuous deformation zone cracks and collapses into the fractured zone, extending the height of the failure zone to 87.1 m. Based on field data, a statistical formula for predicting the maximum height of overburden failure induced by close multiple seam mining is presented.

Analysis of geotechnical Seismic Sensitivity in Kyeongju (경주 지역의 지반공학적 지진 민감도 분석)

  • 선창국
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.130-140
    • /
    • 2000
  • The earthquake hazard has been evaluated for 10km by 10km area around Kyeongju which is located near Yangsan fault and has abundant historical earthquake records. The ground motion potentials were determined based on equivalent linear analysis by using the data obtained from in situ and laboratory tests and the El centro eartqhuake record scaled to CLE and OLE of the region. The in situ tests include 9 boring investigations 2 crosshole 7 downhole 13 SASW tests and in the laboratory X-ray diffraction analyses and resonant column tests were performed. The peak ground accelerations range between 0.140g and 0.286g on CLE and between 0.051g and 0.116g on OLE respectively showing the good potential of amplification in the deep alluvial layer which is common in Kyeongju area. the response spectrum based on the Korea design guide was sometimes underestimate the motion. particularly near the natural period of the site and the importance of site-specific analysis and need for the improved site categorization method were introduced.

  • PDF

Hydrogeological Properties of Geological Elements in Geological Model around KURT (KURT 지역에서 지질모델 요소에 대한 수리지질특성)

  • Park, Kyung Woo;Kim, Kyung Su;Koh, Yong Kwon;Choi, Jong Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.199-208
    • /
    • 2012
  • To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

Spatio-Temporal Variation of Cold Water Masses along the Eastern Coast of Korea in 2013 and 2014

  • Han, In-Seong;Park, Myung-Hee;Min, Seung-Hwan;Kim, Ju-Yeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.3
    • /
    • pp.286-295
    • /
    • 2016
  • With the results of observations in 2013 and 2014 including ocean buoys, in-situ investigations and wind data, we examined the spatio-temporal variation of cold water masses along the eastern coast of Korea. Usually, a cold water mass first appears along the northern part of the eastern coast from May to July, and then along the southern part of the eastern coast from late June to mid-August. Cold water masses appear 3~5 times a year and remain for 5~20 days in the southwestern part of the East Sea. A distinctive cold water mass appeared usually in mid-July in this area, the surface temperature of which was below $10^{\circ}C$ in some cases. During the appearance of a cold water mass in the southwestern part of the East Sea, the horizontal temperature gradient was large at the surface and a significant low water temperature below $8^{\circ}C$ appeared at the bottom level. This appearance of cold water masses clearly corresponded to southwesterly winds, which generated coastal upwelling.