• Title/Summary/Keyword: in situ adsorption

Search Result 69, Processing Time 0.023 seconds

Enhanced Production of Digoxin by Digitoxin Biotransformation Using In Situ Adsorption in Digitalis lanata Cell Cultures

  • Hong, Hee-Jeon;Lee, Jong-Eun;Ahn, Ji-Eun;Kim, Dong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.5
    • /
    • pp.478-483
    • /
    • 1998
  • For the enhanced production of a cardiac glycoside, digoxin, using in situ adsorption by biotransformation from digitoxin in plant cell suspension cultures, selection of proper resins was attempted and the culture conditions were optimized. Among various kinds of resins tested, Amberlite XAD-8 was found to be the best for digoxin production in considering adsorption characteristics as well as the effect on cell growth. Adequate time for resin addition was determined to be 36 h from the beginning of biotransformation and the presence of resins should be as short as possible to increase the productivity. In addition, to prevent the cells from direct contact with resin particles, immobilized systems were designed and examined. Immobilization further improved the advantages of in situ adsorption. It was confirmed that the increase of the contact area for mass transfer was an important factor in utilizing an immobilized system to enhance digoxin production.

  • PDF

Mathematical Model for Adsorption of Berberine on Encapsulated Adsorbent (캡슬에 고정화된 흡착제에의 Berberine의 흡착에 관한 수학적 모델)

  • 최정우;조상원이원홍
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.358-369
    • /
    • 1995
  • A mathematical model using local thermodynamic equilibrium isotherms for adsorption in encapsulated adsorbent is proposed in order to optimize the design parameters in situ bioproduct separation process. The model accurately follows the experimental data on the adsorption of berberine, secondary metabolite produced in Thaictrum rugosum plant cell culture. The adsorption rate on encapsulated adsorbent is compared with that on alginate-entrapped adsorbent. The result shows that the higher loading capacity in encapsulated adsorbent is mainly due to the increase in the maximum solid phase concentration. Based on the adsorption rate and loading capacity, the encapsulated adsorbent would be more useful than the entrapped adsorbent when used in situ bioproduct separation process. Design parameters in situ bioproduct separation process, such as the size of the capsule, membrane thickness, the ratio of capsule volume to bulk volume, the ratio of single capsule volume to total capsule volume and the adsorbent content in the capsule, are evaluated by using the model. The ratio of single capsule volume to total capsule volume is the most effective parameter for adsorption of berberine on encapsulated adsorbent.

  • PDF

Synthesis of CO2 Adsorbent with Various Aminosilanes and its CO2 Adsorption Behavior (다양한 아미노실란을 이용한 이산화탄소 흡착제 합성 및 흡착 특성)

  • Jeon, Jae Wan;Ko, Young Soo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.80-85
    • /
    • 2016
  • The carbon dioxide adsorption behavior of silica with a large specific surface area and pore volume functionalized with aminosilane compounds via in-situ polymerization and functionalization method were investigated. The organosilanes include amino functional group capable of adsorbing carbon dioxide. Elemental analyzer, in situ FT-IR and thermogravimetric analyzer were used to characterize the sorbents and to determine their $CO_2$ adsorption behavior. Comparison of different aminosilane loading in the support revealed that polyaminosilane functionalization of 70% of the pore volume in the support was better in terms of the adsorption capacity and amine efficiency than that of 100% of the pore volume of the support. Furthermore, the sorbents showed a higher adsorption capacity at an adsorption temperature of $75^{\circ}C$ than at $30^{\circ}C$ due to the thermal expansion of synthesized polyaminosilanes inside the pore of silica. The N-[3-(trimethoxysilyl)propyl]ethylenediamine (2NS) sorbent with 70% of the pore volume functionalized showed the highest adsorption capacity of 9.2 wt% at $75^{\circ}C$.

Changes of Adsorption Capacity and Structural Properties during in situ Regeneration of Activated Carbon Bed Using Ozonated Water (오존수 산화를 이용한 활성탄 흡착탑의 현장 재생 시 흡착용량 및 구조특성의 변화)

  • Lee, Jinjoo;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.341-345
    • /
    • 2020
  • An in situ regeneration of activated carbon bed using an ozonated water was studied in order for avoiding the carbon loss, contaminant emission and time consuming for discharge-regeneration-repacking in a conventional thermal regeneration process. Using phenol and polyethylene glycol (PEG) as adsorbates, the adsorption breakthrough and in situ regeneration with the ozonated water were repeated. These organics were supposed to degrade by the oxidation reaction of ozone, regenerating the bed for reuse. As the number of regeneration increased, the adsorption capacity for phenol was reduced, but the change was stabilized showing no further reduction after reaching a certain degree of decrement. The reduction of adsorption capacity was due to the increase of pore size resulting in the decrease of specific surface area during ozonation. The adsorption capacity of phenol decreased after the ozonated regeneration because the in-pore adsorption was prevalent for small molecules like phenol. However, PEG did not show such decrease and the adsorption capacity was constantly maintained after several cycles of the ozonated regeneration probably because the external surface adsorption was the major mechanism for large molecules like PEG. Since the reduction in the pore size and specific surface area for small molecules were proportional to the duration of contact time with the ozonated water, careful considerations of the solute size to be removed and controlling the contact time were necessary to enhance the performance of the ozonated in situ regeneration of activated carbon bed.

Prussian blue immobilization on various filter materials through Layer-by-Layer Assembly for effective cesium adsorption

  • Wi, Hyobin;Kim, Hyowon;Kang, Sung-Won;Hwang, Yuhoon
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.245-250
    • /
    • 2019
  • Prussian blue (PB) is well known for its excellent $Cs^+$ ions adsorption capacity. Due to the high dispersibility of PB in aqueous phase, composite materials imbedding PB in supporting materials have been introduced as a solution. However, building PB particles inside porous supporting materials is still difficult, as PB particles are not fully formed and elute out to water. In this study, we suggest layer-by-layer (LBL) assembly to provide better immobilization of PB on supporting materials of poly vinyl alcohol sponge (PVA) and cellulose filter (CF). Three different PB attachment methods, ex-situ/in-situ/LBL assembly, were evaluated using PB leaching test as well as $Cs^+$ adsorption test. Changes of surface functionality and morphology during PB composite preparation protocols were monitored through Fourier transform infrared spectroscopy and scanning electron microscopy. The results indicate that LBL assembly led to better PB attachment on supporting materials, bringing less eluting PB particles in aqueous phase compared to other synthesis methodologies, such as ex-situ and in-situ synthesis. By enhancing the stability of the adsorbent, adsorption capacity of PVA-PB with LBL improved nine times and that of CF-PB improved over 20 times. Therefore, the results suggest that LBL assembly offers a better orientation for growing PB particles on porous supporting materials.

In Situ Scanning Tunneling Microscope of Cyanide and Thiocyanate Adsorption on Pt(111)

  • Yau, Shueh-Lin;Kim, Youn-Geun;Itaya, Kingo
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.723-730
    • /
    • 1995
  • Cyclic voltammetry and in situ STM were employed to examine the interfacial structures of a Pt(111) electrode in 0.1 mM KCN (pH9.5) and 0.1 mM KSCN (pH7) solutions. In situ STM atomic resolution revealed well ordered (2${\surd}$3${\times}$2${\surd}$3)$R30^{\circ}$-6CN and ($2{\times}2$)-2SCN structures within the double layer charging region. Six CN adsorbates formed a hollow hexagon, which embraced a coadsorbed $K^+$ cation. In contrast, the coadsorbed $K^+$ cations on the SCN covered Pt(111) were poorly ordered, despite adsorbed SCN formed a long range ordered ($2{\times}2$)-2SCN adlattice. In situ STM revealed the pronounced influence of potential in controlling the structures of compact layers at the proximity of a Pt electrode. Cathodic polarization facilitated the replacement of the coadsorbed cations by protons.

  • PDF

Fabrication of in-situ Formed Namo-Composite Using Polymer Precursor : I. Adsorption Behavior of Polymer Followed $SiO_2$ Surface formation onto Silicon Nitride Surface (폴리머 Precursor를 이용한 in-situ 나노 복합체의 제조 : I. 질화규소 표면에서의 $SiO_2$ 피막형성에 따른 폴리머의 흡착거동)

  • 정연길;백운규
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.3
    • /
    • pp.280-287
    • /
    • 2000
  • Adsorption behavior and amount of phenolic resin followed silica (SiO2) formation onto silicon nitride(Si3N4) surface were investigated using electrokinetic sonic amplitude (ESA) technique and with UV spectrometer, to fabricate Si3N4/SiC nano-composite based on reaction between SiO2 formed and phenolic resin absorbed onto Si3N4 particle. The amount of SiO2 formed and carbon from phenolic resin absorbed onto Si3N4 surface were calculated quantitatively to adjust the reaction between SiO2 and phenolic resin, resulting in no residual SiO2 and carbon. As a result, pre-heated tempeature for optimized reaction was below 25$0^{\circ}C$, in which there was no residual SiO2 and carbon.

  • PDF

Study on CO Adsorption on in-situ Brass Formed Cu/ZnO

  • Jung, Kwang-Deog;Joo, Oh-Shim
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.12
    • /
    • pp.1765-1768
    • /
    • 2002
  • The isotherms of CO adsorption on the Cu/ZnO sample treated with with hydrogen and methanol are investigated. The heats of adsorption of CO on the Cu/ZnO treated with hydrogen at 723K for 3 h are in the range from 25.7 kJ/mol at $\theta=0.8$ to 59.8 at $\theta=0.1$, while those on the Cu/ZnO sample treated with methanol at 523 K for 3 h are in the range 30.3 kJ/mol at $\theta=0.8$ to 99.8kJ/mol at $\theta=0.1.$ The Cu/ZnO samples treated with hydrogen do. The heats of adsorption at q=0.1 increase with the methanol treatment time within 30 min and leveled off afterwards.

Adsorption Kinetic Study of Ruthenium Complex Dyes onto TiO2 Anodes for Dye-sensitized Solar Cells (DSSCs) (염료감응 태양전지용 루테늄 금속착체 염료의 이산화티타늄 전극에 대한 동적 흡착 연구)

  • An, Byeong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.929-934
    • /
    • 2011
  • The adsorption kinetic study of ruthenium complex, N3, onto nanoporous titanium dioxide ($TiO_2$) photoanodes has been carried out by measuring dye uptake in-situ. Three simplified kinetic models including a pseudo first-order equation, pseudo second-order equation and intraparticle diffusion equation were chosen to follow the adsorption process. Kinetic parameters, rate constant, equilibrium adsorption capacities and related coefficient coefficients for each kinetic model were calculated and discussed. It was shown that the adsorption kinetics of N3 dye molecules onto porous $TiO_2$ obeys pseudo second-order kinetics with chemisorption being the rate determining step. Additionally the heterogeneous surface and the pore size distribution of porous $TiO_2$ adsorbents were also discussed.