• Title/Summary/Keyword: in situ FT-IR

Search Result 61, Processing Time 0.025 seconds

분무 열분해법을 이용해 제조된 VOx/Mesoporous Titania 상에서 1,2-dichlorobenzene의 분해반응에 대한 in situ FT-IR 연구 (In situ FT-IR Study of 1,2-dichlorobenzene Decomposition over VOx/Mesoporous Titania by Prepared Spray Pyrolysis)

  • 전종기;정경열;박영권
    • 공업화학
    • /
    • 제22권5호
    • /
    • pp.582-585
    • /
    • 2011
  • 본 연구에서는 분무 열분해 방법으로 제조된 메조기공 $V_2O_5/TiO_2$ 촉매 상에서 1,2-dichlorobenzene (1,2-DCB)의 표면 활성종을 파악하고자 하였다. 이를 위하여 in situ FT-IR cell을 이용하여 1,2-DCB의 흡착/탈착을 수행하였다. 또한 기존의 $TiO_2$와 incipient wetness로 제조된 $V_2O_5/TiO_2$ 상의 흡착종들과의 비교도 함께 수행되었다.

The Study on the Precursor Adsorption using in-situ Nanoparticle-assisted Attenuated Total Reflectance Infrared Spectroscopy

  • Shin, Jae-Soo;Park, Myung-Su;Jung, Won-Jun;Park, Hee-Jung;Yun, Ju-Young;Kim, TaeWan;Kang, Sang-Woo
    • Applied Science and Convergence Technology
    • /
    • 제24권4호
    • /
    • pp.90-95
    • /
    • 2015
  • The adsorption behavior of tris (dimethylamino)-cyclopentadienyl-zirconium (Cp-Zr) precursor using an in-situ attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FT-IR) was studied. In attempt to improve the detection intensity of an adsorbed precursor, nanoparticles were uniformly distributed on the Ge ATR crystal surface employing the spray method. The absorption characteristics studies were carried out over the Ge crystal temperature in the range of $30{\sim}50^{\circ}C$. Upon increasing the temperature, a reduction of absorption was observed. Based on the peak intensities of ATR-FT-IR spectroscopy, higher-$ZrO_2$ absorption efficiency occurs when the nano-particles are utilized compared to pure Ge crystal.

Carbohydrate and lipid spectroscopic molecular structures of different alfalfa hay and their relationship with nutrient availability in ruminants

  • Yari, Mojtaba;Valizadeh, Reza;Nnaserian, Abbas Ali;Jonker, Arjan;Yu, Peiqiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권11호
    • /
    • pp.1575-1589
    • /
    • 2017
  • Objective: This study was conducted to determine molecular structures related to carbohydrates and lipid in alfalfa hay cut at early bud, late bud and early flower and in the afternoon and next morning using Fourier transform infrared spectroscopy (FT/IR) and to determine their relationship with alfalfa hay nutrient profile and availability in ruminants. Methods: Chemical composition analysis, carbohydrate fractionation, in situ ruminal degradability, and DVE/OEB model were used to measure nutrient profile and availability of alfalfa hay. Univariate analysis, hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify FT/IR spectra differences. Results: The FT/IR non-structural carbohydrate (NSCHO) to total carbohydrates and NSCHO to structural carbohydrate ratios decreased (p<0.05), while lignin to NSCHO and lipid CH3 symmetric to CH2 symmetric ratios increased with advancing maturity (p<0.05). The FT/IR spectra related to structural carbohydrates, lignin and lipids were distinguished for alfalfa hay at three maturities by PCA and CLA, while FT/IR molecular structures related to carbohydrates and lipids were similar between alfalfa hay cut in the morning and afternoon when analyzed by PCA and CLA analysis. Positive correlations were found for FT/IR NSCHO to total carbohydrate and NSCHO to structural carbohydrate ratios with non-fiber carbohydrate (by wet chemistry), ruminal fast and intermediately degradable carbohydrate fractions and total ruminal degradability of carbohydrates and predicted intestinal nutrient availability in dairy cows ($r{\geq}0.60$; p<0.05) whereas FT/IR lignin to NSCHO and CH3 to CH2 symmetric stretching ratio had negative correlation with predicted ruminal and intestinal nutrient availability of alfalfa hay in dairy cows ($r{\geq}-0.60$; p<0.05). Conclusion: FT/IR carbohydrate and lipid molecular structures in alfalfa hay changed with advancing maturity from early bud to early flower, but not during the day, and these molecular structures correlated with predicted nutrient supply of alfalfa hay in ruminants.

다양한 아미노실란을 이용한 이산화탄소 흡착제 합성 및 흡착 특성 (Synthesis of CO2 Adsorbent with Various Aminosilanes and its CO2 Adsorption Behavior)

  • 전재완;고영수
    • 공업화학
    • /
    • 제27권1호
    • /
    • pp.80-85
    • /
    • 2016
  • 넓은 비표면적과 큰 기공 부피를 갖는 실리카에 다양한 아미노실란 화합물을 in-situ 중합법을 통해 기능화 후 이산화탄소 흡착 특성을 확인하였다. 이산화탄소 흡착 기능기로 아민기가 포함된 아미노실란 화합물이 사용되었다. 흡착제의 흡착 특성 분석을 위해 질소 흡 탈착 실험과 원소분석, in situ FT-IR, TGA를 이용하였다. 흡착제 합성 전후를 비교하였을 때 폴리아미노실란이 기능화되면 표면적과 기공부피 및 크기가 감소하였으며 실리카 기공 부피의 70%에 해당하는 폴리아미노실란 화합물을 기능화 시켰을 경우 기공 부피의 100% 기능화 보다 이산화탄소 흡착능이 향상되었다. 흡착 온도를 비교하며 $30^{\circ}C$보다 $75^{\circ}C$에서 폴리아미노실란 화합물의 열팽창과 자유부피 증가로 흡착능이 증가하였고, 2NS/NPS-2의 경우 기공 부피 70% 기능화와 흡착 온도 $75^{\circ}C$에서 9.2 wt%의 높은 $CO_2$ 흡착능을 보였다.

FT-IR Study of Dopant-wool Interactions During PPy Deposition

  • Varesano Alessio;Aluigi Annalisa;Tonin Claudio;Ferrero Franco
    • Fibers and Polymers
    • /
    • 제7권2호
    • /
    • pp.105-111
    • /
    • 2006
  • Coating the fibre surface by in situ oxidative chemical polymerisation of polypyrrole (using $FeCl_3$ as oxidant) is a readily industrial applicable way to give electrical properties to wool with good ageing stability [1], although pre-treatments are required to avoid damage of the cuticle surface due to the acidic condition of the process. FT-IR and EDX analysis reveal that organic sulphonates and sulphates, used as dopants, are absorbed by wool, while chlorine ions are preferably embedded on the polypyrrole layer. The resulting electrical conductivity seems mainly due to the presence of chlorine as counter-ion of polypyrrole; nevertheless, the presence of arylsulphonate in the polymerisation bath increases the electrical conductivity of the coating layer.

Preparation of Microcapsules Containing Fragrant Oil and Its Application to Textile Finishing

  • Hwang, Jun-Seok;Kim, Jin-Nam;Wee, Young-Jung;Ryu, Hwa-Won;Yun, Jong-Sun;Jang, Hong-Gi;Kim, Sun-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.860-863
    • /
    • 2005
  • The microcapsules containing fragrant oil as functional material were prepared by in-situ polymerization with prepolymer that was made from melamine-formaldehyde (MF) as wall material of microcapsules. The effects of polymerization variables, such as the nature and concentration of surfactants, stirring rate, and stirring time, on the size and distribution of the particles were investigated. Fourier transform-infrared spectroscopy (FT-IR), thermal analysis, particle size analysis, scanning electron microscopy (SEM) observation were used to investigate the characteristics of microcapsules. Through the FT-IR and SEM analysis, we found that the prepared microcapsules were containing fragrant oil and the shape of particle was spherical. The nature and concentration of surfactants, stirring rate, and stirring time had profound effects on the particle size and particle size distribution.

  • PDF