• Title/Summary/Keyword: in silico docking

Search Result 87, Processing Time 0.024 seconds

In Silico Interaction and Docking Studies Indicate a New Mechanism for PML Dysfunction in Gastric Cancer and Suggest Imatinib as a Drug to Restore Function

  • Imani-Saber, Zeinab;Ghafouri-Fard, Soudeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.5005-5006
    • /
    • 2015
  • Gastric cancer as one of the most common cancers worldwide has various genetic and environmental risk factors including Helicobacter pylori (H.pylori) infection. Recently, loss of a tumor suppressor gene named promyelocytic leukemia (PML) has been identified in gastric cancer. However, no mutation has been found in this gene in gastric cancer samples. Cag A H.pylori protein has been shown to exert post transcriptional regulation of some tumor suppressor genes. In order to assess such a mechanism for PML degradation, we performed in silico analyses to establish any interaction between PML and Cag A proteins. In silico interaction and docking studies showed that these two proteins may have stable interactions. In addition, we showed that imatinib kinase inhibitor can restore PML function by inhibition of casein kinase 2.

In silico target identification of biologically active compounds using an inverse docking simulation

  • Choi, Youngjin
    • CELLMED
    • /
    • v.3 no.2
    • /
    • pp.12.1-12.4
    • /
    • 2013
  • Identification of target protein is an important procedure in the course of drug discovery. Because of complexity, action mechanisms of herbal medicine are rather obscure, unlike small-molecular drugs. Inverse docking simulation is a reverse use of molecular docking involving multiple target searches for known chemical structure. This methodology can be applied in the field of target fishing and toxicity prediction for herbal compounds as well as known drug molecules. The aim of this review is to introduce a series of in silico works for predicting potential drug targets and side-effects based on inverse docking simulations.

Docking Study of Biflavonoids, Allosteric Inhibitors of Protein Tyrosine Phosphatase 1B

  • Lee, Jee-Young;Jung, Ki-Woong;Woo, Eun-Rhan;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1479-1484
    • /
    • 2008
  • Protein tyrosine phosphatase (PTP) 1B is the superfamily of PTPs and a negative regulator of multiple receptor tyrosine kinases (RTKs). Inhibition of protein tyrosine phosphatase 1B (PTP1B) has been proposed as a strategy for the treatment of type 2 diabetes and obesity. Recently, it has been reported that amentoflavone, a biflavonoid extracted from Selaginella tamariscina, inhibited PTP1B. In the present study, docking model between amentoflavone and PTP1B was determined using automated docking study. Based on this docking model and the interactions between the known inhibitors and PTP1B, we determined multiple pharmacophore maps which consisted of five features, two hydrogen bonding acceptors, two hydrogen bonding donors, and one lipophilic. Using receptor-oriented pharmacophore-based in silico screening, we searched the biflavonoid database including 40 naturally occurring biflavonoids. From these results, it can be proposed that two biflavonoids, sumaflavone and tetrahydroamentoflavone can be potent allosteric inhibitors, and the linkage at 5',8''-position of two flavones and a hydroxyl group at 4'-position are the critical factors for their allosteric inhibition. This study will be helpful to understand the mechanism of allosteric inhibition of PTP1B by biflavonoids and give insights to develop potent inhibitors of PTP1B.

In-silico and In-vitro based studies of Streptomyces peucetius CYP107N3 for oleic acid epoxidation

  • Bhattarai, Saurabh;Niraula, Narayan Prasad;Sohng, Jae Kyung;Oh, Tae-Jin
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.736-741
    • /
    • 2012
  • Certain members of the cytochromes P450 superfamily metabolize polyunsaturated long-chain fatty acids to several classes of oxygenated metabolites. An approach based on in silico analysis predicted that Streptomyces peucetius CYP107N3 might be a fatty acid-metabolizing enzyme, showing high homology with epoxidase enzymes. Homology modeling and docking studies of CYP107N3 showed that oleic acid can fit directly into the active site pocket of the double bond of oleic acid within optimum distance of $4.6{\AA}$ from the Fe. In order to confirm the epoxidation activity proposed by in silico analysis, a gene coding CYP107N3 was expressed in Escherichia coli. The purified CYP107N3 was shown to catalyze $C_9-C_{10}$ epoxidation of oleic acid in vitro to 9,10-epoxy stearic acid confirmed by ESI-MS, HPLC-MS and GC-MS spectral analysis.

Cyclooxygenase-2 Inhibitor Parecoxib Was Disclosed as a PPAR-γ Agonist by In Silico and In Vitro Assay

  • Xiao, Bin;Li, Dan-dan;Wang, Ying;Kim, Eun La;Zhao, Na;Jin, Shang-Wu;Bai, Dong-Hao;Sun, Li-Dong;Jung, Jee H.
    • Biomolecules & Therapeutics
    • /
    • v.29 no.5
    • /
    • pp.519-526
    • /
    • 2021
  • In a search for effective PPAR-γ agonists, 110 clinical drugs were screened via molecular docking, and 9 drugs, including parecoxib, were selected for subsequent biological evaluation. Molecular docking of parecoxib to the ligand-binding domain of PPAR-γ showed high binding affinity and relevant binding conformation compared with the PPAR-γ ligand/antidiabetic drug rosiglitazone. Per the docking result, parecoxib showed the best PPAR-γ transactivation in Ac2F rat liver cells. Further docking simulation and a luciferase assay suggested parecoxib would be a selective (and partial) PPAR-γ agonist. PPAR-γ activation by parecoxib induced adipocyte differentiation in 3T3-L1 murine preadipocytes. Parecoxib promoted adipogenesis in a dose-dependent manner and enhanced the expression of adipogenesis transcription factors PPAR-γ, C/EBPα, and C/EBPβ. These data indicated that parecoxib might be utilized as a partial PPAR-γ agonist for drug repositioning study.

In Silico Docking to Explicate Interface between Plant-Originated Inhibitors and E6 Oncogenic Protein of Highly Threatening Human Papillomavirus 18

  • Kumar, Satish;Jena, Lingaraja;Sahoo, Maheswata;Kakde, Mrunmayi;Daf, Sangeeta;Varma, Ashok K.
    • Genomics & Informatics
    • /
    • v.13 no.2
    • /
    • pp.60-67
    • /
    • 2015
  • The leading cause of cancer mortality globally amongst the women is due to human papillomavirus (HPV) infection. There is need to explore anti-cancerous drugs against this life-threatening infection. Traditionally, different natural compounds such as withaferin A, artemisinin, ursolic acid, ferulic acid, (-)-epigallocatechin-3-gallate, berberin, resveratrol, jaceosidin, curcumin, gingerol, indol-3-carbinol, and silymarin have been used as hopeful source of cancer treatment. These natural inhibitors have been shown to block HPV infection by different researchers. In the present study, we explored these natural compounds against E6 oncoprotein of high risk HPV18, which is known to inactivate tumor suppressor p53 protein. E6, a high throughput protein model of HPV18, was predicted to anticipate the interaction mechanism of E6 oncoprotein with these natural inhibitors using structure-based drug designing approach. Docking analysis showed the interaction of these natural inhibitors with p53 binding site of E6 protein residues 108-117 (CQKPLNPAEK) and help reinstatement of normal p53 functioning. Further, docking analysis besides helping in silico validations of natural compounds also helped elucidating the molecular mechanism of inhibition of HPV oncoproteins.

In Silico Analysis of Potential Antidiabetic Phytochemicals from Matricaria chamomilla L. against PTP1B and Aldose Reductase for Type 2 Diabetes Mellitus and its Complications

  • Hariftyani, Arisvia Sukma;Kurniawati, Lady Aqnes;Khaerunnisa, Siti;Veterini, Anna Surgean;Setiawati, Yuani;Awaluddin, Rizki
    • Natural Product Sciences
    • /
    • v.27 no.2
    • /
    • pp.99-114
    • /
    • 2021
  • Type 2 diabetes mellitus (T2DM) and its complications are important noncommunicable diseases with high mortality rates. Protein tyrosine phosphatase 1B (PTP1B) and aldose reductase inhibitors are recently approached and advanced for T2DM and its complications therapy. Matricaria chamomilla L. is acknowledged as a worldwide medicinal herb that has many beneficial health effects as well as antidiabetic effects. Our research was designed to determine the most potential antidiabetic phytochemicals from M. chamomilla employing in silico study. 142 phytochemicals were obtained from the databases. The first screening employed iGEMdock and Swiss ADME, involving 93 phytochemicals. Finally, 30 best phytochemicals were docked. Molecular docking and visualization analysis were performed using Avogadro, AutoDock 4.2., and Biovia Discovery Studio 2016. Molecular docking results demonstrate that ligand-protein interaction's binding affinities were -5.16 to -7.54 kcal/mol and -5.30 to -12.10 kcal/mol for PTP1B and aldose reductase protein targets respectively. In silico results demonstrate that M. chamomilla has potential antidiabetic phytochemical compounds for T2DM and its complications. We recommended anthecotulide, quercetin, chlorogenic acid, luteolin, and catechin as antidiabetic agents due to their binding affinities against both PTP1B and aldose reductase protein. Those phytochemicals' significant efficacy and potential as antidiabetic must be investigated in further advanced research.

Exploring the Potential of Natural Products as FoxO1 Inhibitors: an In Silico Approach

  • Anugya Gupta;Rajesh Haldhar;Vipul Agarwal;Dharmendra Singh Rajput;Kyung-Soo Chun;Sang Beom Han;Vinit Raj;Sangkil Lee
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.390-398
    • /
    • 2024
  • FoxO1, a member of the Forkhead transcription factor family subgroup O (FoxO), is expressed in a range of cell types and is crucial for various pathophysiological processes, such as apoptosis and inflammation. While FoxO1's roles in multiple diseases have been recognized, the target has remained largely unexplored due to the absence of cost-effective and efficient inhibitors. Therefore, there is a need for natural FoxO1 inhibitors with minimal adverse effects. In this study, docking, MMGBSA, and ADMET analyses were performed to identify natural compounds that exhibit strong binding affinity to FoxO1. The top candidates were then subjected to molecular dynamics (MD) simulations. A natural product library was screened for interaction with FoxO1 (PDB ID-3CO6) using the Glide module of the Schrödinger suite. In silico ADMET profiling was conducted using SwissADME and pkCSM web servers. Binding free energies of the selected compounds were assessed with the Prime-MMGBSA module, while the dynamics of the top hits were analyzed using the Desmond module of the Schrödinger suite. Several natural products demonstrated high docking scores with FoxO1, indicating their potential as FoxO1 inhibitors. Specifically, the docking scores of neochlorogenic acid and fraxin were both below -6.0. These compounds also exhibit favorable drug-like properties, and a 25 ns MD study revealed a stable interaction between fraxin and FoxO1. Our findings highlight the potential of various natural products, particularly fraxin, as effective FoxO1 inhibitors with strong binding affinity, dynamic stability, and suitable ADMET profiles.

In Silico Analysis and Molecular Docking Comparison of Mosquito Oviposition Pheromone and Beta-asarone on the Mosquito Odorant Binding Protein-1 (In Silico 분자결합 분석방법을 활용한 MOP와 베타아사론의 열대집모기 후각단백질 활성 부위에 대한 결합 친화도 비교 분석)

  • Kim, Dong-Chan
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.195-200
    • /
    • 2018
  • Beta-asarone is the well-known active ingredient of Rhizoma acori graminei. In this study, we investigated and compared the binding affinity of mosquito oviposition pheromone (MOP; (5R,6S)-6-acetoxy-5-hexadecanolide) and beta-asarone on the A domain of the mosquito odorant binding protein 1 (CquiOBP1) by in silico computational docking studies. The three-dimensional crystallographic structure of CquiOBP1 was obtained from the PDB database (PDB ID: 3OGN). In silico computational auto-docking analysis was performed using PyRx, Autodock Vina, Discovery Studio Version 4.5, and the NX-QuickPharm option based on scoring functions. The beta-asarone showed optimum binding affinity (docking energy) with CquiOBP1 as -6.40 kcal/mol as compared to the MOP (-6.00 kcal/mol). Among the interacting amino acids (LEU76, LEU80, ALA88, MET89, HIS111, TRP114, and TYR122), tryptophan 114 in the CquiOBP1 active site significantly interacted with both MOP and beta-asarone. Amino acids substitution (mutation) from non-polar groups to the polar (or charged) groups of the CquiOBP1 dramatically changed the X, Y, Z grid position and binding affinity of both ligands. These results significantly indicated that beta-asarone could be a more potent ligand to the CquiOBP1 than MOP. Therefore, the extract of Rhizoma acori graminei or beta-asarone can be applied to the fields of insecticidal and repellant biomaterial development.

Application of Docking Methods: An Effective In Silico Tool for Drug Design

  • Kulkarni, Seema;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.6 no.2
    • /
    • pp.100-103
    • /
    • 2013
  • Using computational approaches we can dock small molecules into the structures of Macromolecular targets and then score their potential complementarity to binding sites is widely used in hit identification and lead optimization techniques. This review seeks to provide the application of docking in structure-based drug design (binding mode prediction, Lead Identification and Lead optimization), and also discussed how to manage errors in docking methodology in order to overcome certain limitations of docking and scoring algorithm.