Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.12.080

In-silico and In-vitro based studies of Streptomyces peucetius CYP107N3 for oleic acid epoxidation  

Bhattarai, Saurabh (Institute of Biomolecule Reconstruction (IBR), Department of Pharmaceutical Engineering, SunMoon University)
Niraula, Narayan Prasad (Institute of Biomolecule Reconstruction (IBR), Department of Pharmaceutical Engineering, SunMoon University)
Sohng, Jae Kyung (Institute of Biomolecule Reconstruction (IBR), Department of Pharmaceutical Engineering, SunMoon University)
Oh, Tae-Jin (Institute of Biomolecule Reconstruction (IBR), Department of Pharmaceutical Engineering, SunMoon University)
Publication Information
BMB Reports / v.45, no.12, 2012 , pp. 736-741 More about this Journal
Abstract
Certain members of the cytochromes P450 superfamily metabolize polyunsaturated long-chain fatty acids to several classes of oxygenated metabolites. An approach based on in silico analysis predicted that Streptomyces peucetius CYP107N3 might be a fatty acid-metabolizing enzyme, showing high homology with epoxidase enzymes. Homology modeling and docking studies of CYP107N3 showed that oleic acid can fit directly into the active site pocket of the double bond of oleic acid within optimum distance of $4.6{\AA}$ from the Fe. In order to confirm the epoxidation activity proposed by in silico analysis, a gene coding CYP107N3 was expressed in Escherichia coli. The purified CYP107N3 was shown to catalyze $C_9-C_{10}$ epoxidation of oleic acid in vitro to 9,10-epoxy stearic acid confirmed by ESI-MS, HPLC-MS and GC-MS spectral analysis.
Keywords
Cytochrome P450; Epoxidation; Homology Modeling/docking; In silico; Streptomyces peucetius;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Stark, K., Wongsud, B., Burman, R. and Oliw, E. H. (2005) Oxygenation of polyunsaturated long chain fatty acids by recombinant CYP4F8 and CYP4F12 and catalytic importance of Tyr-125 and Gly-328 of CYP4F8. Arch. Biochem. Biophys. 441, 174-181.   DOI   ScienceOn
2 Shah, S., Xue, Q., Tang, L., Carney, J. R., Betlach, M. and McDaniel, R. (2000) Cloning, characterization and heterologous expression of polyketide synthase and P-450 oxidase involved in the biosynthesis of the antibiotic oleandomycin. J. Antibiot. 53, 502-508.   DOI
3 Ward, S. L., Hu, Z., Schirmer, A., Reid, R., Revill, W. P., Reeves, C. D., Petrakovsky, O. V., Dong, S. D. and Katz, L. (2004) Chalcomycin biosynthesis gene cluster from Streptomyces bikiniensis: novel features of an unusual ketolide produced through expression of the chm polyketide synthase in Streptomyces fradiae. Antimicrob. Agent Chemother. 48, 4703-4712.   DOI   ScienceOn
4 Sali, A., Pottertone, L., Yuan, F., Van Vlijmen, H. and Karplus, M. (1995) Evaluation of comparative protein modeling by MODELLER. Proteins 23, 318-326.   DOI   ScienceOn
5 Venkatachalam, C. M., Jiang, X., Oldfield, T. and Waldman, M. (2003) LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model 21, 289-307.   DOI   ScienceOn
6 Schenkman, J. B., Sligar, S. G. and Cinti, D. L. (1981) Substrate interaction with cytochrome P-450. Pharmacol. Ther. 12, 43-71.   DOI   ScienceOn
7 Kuo, T. M. and Lanser, A. C. (2003) Factors influencing the production of novel compound, 7,10-dihydroxy-8(e)- octadecanoic acid, by pseudomonas aeruginosa PR3 (NRRL B-18602) in batch cultures. Curr. Microbiol. 47, 186-197.   DOI
8 Kuo, T. M., Lanser, A. C., Nakamura, L. K. and Hou, C. T. (2000) Production of 10-ketostearic acid and 10-hydroxystearic acid by strains of Sphingobacterium thalophilum isolated from composted manure. Curr. Microbiol. 40, 105-109.   DOI
9 Kuo, T. M., Nakamura, L. K. and Lanser, A. C. (2002) Conversion of fatty acid by Bacillus sphaericus-like organisms. Curr. Microbiol. 45, 265-271.   DOI
10 Schneider, S., Wubbolts, M. G., Sanglard, D. and Witholt, B. (1998) Biocatalyst engineering by assembly of fatty acid transport and oxidation activities for in vivo application of cytochrome P450BM-3 monooxygenase. Appl. Environ. Microbiol. 64, 3784-3790.
11 Schneider, S., Wubbolts, M. G., Oesterhelt, G., Samglard, D. and Witholt, B. (1999) Controlled regioselectivity of fatty acid oxidation by whole cells producing cytochrome P450BM-3 monooxygenase under varied dissolved oxygen concentration. Biotechnol. Bioeng. 64, 333-341.   DOI
12 Sauveplane, V., Kandel, S., Kastner, P. E., Ehlting, J., Compagnon, V., Werck-Reichhart, D. and Pinot, F. (2009) Arabidopsis thaliana CYP77A4 is the first cytochrome P450 able to catalyze the epoxidation of free fatty acids in plants. FEBS J. 276, 719-735.   DOI   ScienceOn
13 Laethem, R. M., Balazy, M. and Koop, D. R. (1996) Epoxidation of C18 unsaturated fatty acids by cytochromes P4502C2 and P4502CAA. Drug Metab. Dispos. 24, 664-668.
14 Ortiz de Montellano, P. R., Chan, W. K., Tuck, S. F., Kaikaus, R. M., Bass, N. M. and Peterson, J. A. (1992) Mechanism-based probes of the topology and function of fatty acid hydroxylases. FASEB J. 6, 695-699.   DOI
15 Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. and Hopwood, D. A. (2000) Practical Streptomyces Genetics. 2nd ed. The John Innes Centre Foundation, Norwich, UK.
16 Sambrook, J. and Russell, D. W. (2001) Molecular cloning, a laboratory manual. 3rd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
17 Sugimoto, H., Shinkyo, R., Hayashi, K., Yoneda, S., Yamada, M., Kamakura, M., Ikushiro, S., Shiro, Y. and Sakaki, T. (2008) Crystal structure of CYP105A1 (P450SU-1) in complex with 1 alpha,25-dihydroxyvitamin D3. Biochemistry 47, 4017-4027.   DOI   ScienceOn
18 Zhao, B., Guengerich, F. P., Voehler, M. and Waterman, M. R. (2005) Role of active site water molecules and substrate hydroxyl groups in oxygen activation by cytochrome P450 158A2: A new mechanism of proton transfer. J. Biol. Chem. 280, 42188-42197.   DOI   ScienceOn
19 Xu, L. H., Fushinobu, S., Ikeda, H., Wakagi, T. and Shoun, H. (2009) Crystal structure of cytochrome P450 105P1 from Streptomyces avermitilis: conformational flexibility and histidine ligation state. J. Bacteriol. 191, 1211-1219.   DOI   ScienceOn
20 Sippl, M. J. (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17, 355-362.   DOI   ScienceOn
21 Lovell, S. C., Davis, I. Q., Arendall III, W. B., de Bakker, P. I., Word, J. M., Prisant, M. G., Richardson, J. S. and Richardson, D. C. (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50, 437- 450.   DOI   ScienceOn
22 Maiti, R., Van Domselaar, G. H., Zhang, H. and Wishart, D. S. (2004) SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res. 32, W590- W594.   DOI   ScienceOn
23 Hussain, H. A. and Ward, J. M. (2003) Enhanced heterologous expression of two Streptomyces griseolus cytochrome P450s and Streptomyces coelicolor ferredoxin reductase as potentially efficient hydroxylation catalysts. Appl. Environ. Microbiol. 69, 373-382.   DOI
24 Omura, T. and Sato, R. (1964) The carbon monoxide- binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 239, 2370-2378.
25 Werck-Reichhart, D. and Feyereisen, R. (2000) Cytochromes P450: a success story. Genome Biol. 1, 3003.1-3003.9.
26 Funk, C. D. (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871-1875.   DOI   ScienceOn
27 Blee, E. (2002) Impact of phyto-oxylipins in plant defense. Trends Plant Sci. 7, 315-322.   DOI   ScienceOn
28 Noverr, M. C., Erb-Downward, J. R. and Huffnagle, G. B. (2003) Production of eicosanoids and other oxylipins by pathogenic eukaryotic microbes. Clin. Microbiol. Rev. 16, 517-533.   DOI
29 Fer, M., Goulitquer, S., Dreano, Y., Berthou, F., Corcos, L. and Amet, Y. (2006) Determination of polyunsaturated fatty acid monoepoxides by high performance liquid chromatography- mass spectrometry. J. Chromatogr. A 1115, 1-7.   DOI   ScienceOn
30 Lauterbach, B., Barbosa-Sicard, E., Wang, M. H., Honeck, H., Kargel, E., Theuer, J., Schwartzman, M. L., Haller, H., Luft, F. C., Gollasch, M. and Schunck, W. H. (2002) Cytochrome P450-dependent eicosapentaenoic acid metabolites are novel BK channel activators. Hypertension 39, 609-613.   DOI   ScienceOn
31 Ye, D., Zhang, D., Oltman, C., Dellsperger, K., Lee, H. C. and VanRollins, M. (2002) Cytochrome p-450 epoxygenase metabolites of docosahexaenoate potently dilate coronary arterioles by activating large-conductance calcium-activated potassium channels. J. Pharmacol. Exp. Ther. 303, 768-776.   DOI   ScienceOn
32 Hercule, H. C., Salanova, B., Essin, K., Honeck, H., Falck, J. R., Sausbier, M., Ruth, P., Schunck, W. H., Luft, F. C. and Gollasch, M. (2007) The vasodilator 17,18-epoxyeicosatetraenoic acid targets the pore-forming BK alpha channel subunit in rodents. Exp. Physiol. 92, 1067-1076.   DOI   ScienceOn
33 Morin, C., Sirois, M., Echave, V., Rizcallah, E. and Rousseau, E. (2009) Relaxing effects of 17(18)-EpETE on arterial and airway smooth muscles in human lung. Am. J. Physiol. Lung Cell Mol. Physiol. 296, L130-L139.   DOI
34 Van Rollins, M. (1995) Epoxygenase metabolites of docosahexaenoic and eicosapentaenoic acids inhibit platelet aggregation at concentrations below those affecting thromboxane synthesis. J. Pharmacol. Exp. Ther. 274, 798-804.
35 Graham-Lorence, S., Truan, G., Peterson, J. A., Falck, J. R., Wei, S., Helvig, C. and Capdevila, J. H. (1997) An active site substitution, F87V, converts cytochrome P450 BM-3 into a regio- and stereoselective (14S,15R)-arachidonic acid epoxygenase. J. Biol. Chem. 272, 1127-1135.   DOI   ScienceOn
36 Roman, R. J. (2002) P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol. Rev. 82, 131-185.   DOI
37 Fleming, I. (2007) Epoxyeicosatrienoic acids, cell signaling and angiogenesis. Prostaglandins Other Lipid Mediat. 82, 60-67.   DOI   ScienceOn
38 Zeldin, D. C., Moomaw, C. R., Jesse, N., Tomer, K. B., Beetham, J., Hammock, B. D. and Wu, S. (1996) Biochemical characterization of the human liver cytochrome P450 arachidonic acid epoxygenase pathway. Arch. Biochem. Biophys. 330, 87-96.   DOI   ScienceOn
39 King, L. M., Ma, J., Srettabunjong, S., Graves, J., Bradbury, J. A., Li, L., Spiecker, M., Liao, J. K., Mohrenweiser, H. and Zeldin, D. C. (2002) Cloning of CYP2J2 gene and identification of polymorphisms. Mol. Pharmacol. 61, 840-852.   DOI   ScienceOn