• 제목/요약/키워드: in silico

검색결과 386건 처리시간 0.032초

Multi-epitope vaccine against drug-resistant strains of Mycobacterium tuberculosis: a proteome-wide subtraction and immunoinformatics approach

  • Md Tahsin Khan;Araf Mahmud;Md. Muzahidul Islam;Mst. Sayedatun Nessa Sumaia;Zeaur Rahim;Kamrul Islam;Asif Iqbal
    • Genomics & Informatics
    • /
    • 제21권3호
    • /
    • pp.42.1-42.23
    • /
    • 2023
  • Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the most deadly infections in humans. The emergence of multidrug-resistant and extensively drug-resistant Mtb strains presents a global challenge. Mtb has shown resistance to many frontline antibiotics, including rifampicin, kanamycin, isoniazid, and capreomycin. The only licensed vaccine, Bacille Calmette-Guerin, does not efficiently protect against adult pulmonary tuberculosis. Therefore, it is urgently necessary to develop new vaccines to prevent infections caused by these strains. We used a subtractive proteomics approach on 23 virulent Mtb strains and identified a conserved membrane protein (MmpL4, NP_214964.1) as both a potential drug target and vaccine candidate. MmpL4 is a non-homologous essential protein in the host and is involved in the pathogen-specific pathway. Furthermore, MmpL4 shows no homology with anti-targets and has limited homology to human gut microflora, potentially reducing the likelihood of adverse effects and cross-reactivity if therapeutics specific to this protein are developed. Subsequently, we constructed a highly soluble, safe, antigenic, and stable multi-subunit vaccine from the MmpL4 protein using immunoinformatics. Molecular dynamics simulations revealed the stability of the vaccine-bound Tolllike receptor-4 complex on a nanosecond scale, and immune simulations indicated strong primary and secondary immune responses in the host. Therefore, our study identifies a new target that could expedite the design of effective therapeutics, and the designed vaccine should be validated. Future directions include an extensive molecular interaction analysis, in silico cloning, wet-lab experiments, and evaluation and comparison of the designed candidate as both a DNA vaccine and protein vaccine.

Two Flavonoid-Based Compounds from Murraya paniculata as Novel Human Carbonic Anhydrase Isozyme II Inhibitors Detected by a Resazurin Yeast-Based Assay

  • Sangkaew, Anyaporn;Samritsakulchai, Nawara;Sanachai, Kamonpan;Rungrotmongkol, Thanyada;Chavasiri, Warinthorn;Yompakdee, Chulee
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권4호
    • /
    • pp.552-560
    • /
    • 2020
  • Human carbonic anhydrase (CA) isozyme II has been used as protein target for disorder treatment including glaucoma. Current clinically used sulfonamide-based CA inhibitors can induce side effects, and so alternatives are required. This study aimed to investigate a natural CA inhibitor from Murraya paniculata. The previously developed yeast-based assay was used to screen 14 compounds isolated from M. paniculata and identified by NMR analysis for anti-human CA isozyme II (hCAII) activity. Cytotoxicity of the compounds was also tested using the same yeast-based assay but in a different cultivation condition. Two flavonoid candidate compounds, 5, 6, 7, 8, 3', 4', 5'-heptamethoxyflavone (4) and 3, 5, 7, 8, 3', 4', 5'-heptamethoxyflavone (9), showed potent inhibitory activity against hCAII with a minimal effective concentration of 10.8 and 21.5 μM, respectively, while they both exhibited no cytotoxic effect, even at the highest concentration tested (170 μM). The results from an in vitro esterase assay of the two candidates confirmed their hCAII inhibitory activity with IC50 values of 24.0 and 34.3 μM, respectively. To investigate the potential inhibition mechanism of compound 4, in silico molecular docking was performed using the FlexX and SwissDock software. This revealed that compound 4 coordinated with the Zn2+ ion in the hCAII active site through its methoxy oxygen at a distance of 1.60 Å (FlexX) or 2.29 Å (SwissDock). The interaction energy of compound 4 with hCAII was -13.36 kcal/mol. Thus, compound 4 is a potent novel flavonoid-based hCAII inhibitor and may be useful for further anti-CAII design and development.

Computational Analysis of the 3-D structure of Human GPR87 Protein: Implications for Structure-Based Drug Design

  • Rani, Mukta;Nischal, Anuradha;Sahoo, Ganesh Chandra;Khattri, Sanjay
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7473-7482
    • /
    • 2013
  • The G-protein coupled receptor 87 (GPR87) is a recently discovered orphan GPCR which means that the search of their endogenous ligands has been a novel challenge. GPR87 has been shown to be overexpressed in squamous cell carcinomas (SCCs) or adenocarcinomas in lungs and bladder. The 3D structure of GPR87 was here modeled using two templates (2VT4 and 2ZIY) by a threading method. Functional assignment of GPR87 by SVM revealed that along with transporter activity, various novel functions were predicted. The 3D structure was further validated by comparison with structural features of the templates through Verify-3D, ProSA and ERRAT for determining correct stereochemical parameters. The resulting model was evaluated by Ramachandran plot and good 3D structure compatibility was evidenced by DOPE score. Molecular dynamics simulation and solvation of protein were studied through explicit spherical boundaries with a harmonic restraint membrane water system. A DRY-motif (Asp-Arg-Tyr sequence) was found at the end of transmembrane helix3, where GPCR binds and thus activation of signals is transduced. In a search for better inhibitors of GPR87, in silico modification of some substrate ligands was carried out to form polar interactions with Arg115 and Lys296. Thus, this study provides early insights into the structure of a major drug target for SCCs.

Diversity and Polymorphism in AHL-Lactonase Gene (aiiA) of Bacillus

  • Huma, Nusrat;Shankar, Pratap;Kushwah, Jyoti;Bhushan, Ashish;Joshi, Jayadev;Mukherjee, Tanmoy;Raju, Sajan C.;Purohit, Hemant J.;Kalia, Vipin Chandra
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권10호
    • /
    • pp.1001-1011
    • /
    • 2011
  • To explore bacterial diversity for elucidating genetic variability in acylhomoserine lactone (AHL) lactonase structure, we screened 800 bacterial strains. It revealed the presence of a quorum quenching (QQ) AHL-lactonase gene (aiiA) in 42 strains. These 42 strains were identified using rrs (16S rDNA) sequencing as Bacillus strains, predominantly B. cereus. An in silico restriction endonuclease (RE) digestion of 22 AHL lactonase gene (aiiA) sequences (from NCBI database) belonging to 9 different genera, along with 42 aiiA gene sequences from different Bacillus spp. (isolated here) with 14 type II REs, revealed distinct patterns of fragments (nucleotide length and order) with four REs; AluI, DpnII, RsaI, and Tru9I. Our study reflects on the biodiversity of aiiA among Bacillus species. Bacillus sp. strain MBG11 with polymorphism (115Alanine > Valine) may confer increased stability to AHL lactonase, and can be a potential candidate for heterologous expression and mass production. Microbes with ability to produce AHL-lactonases degrade quorum sensing signals such as AHL by opening of the lactone ring. The naturally occurring diversity of QQ molecules provides opportunities to use them for preventing bacterial infections, spoilage of food, and bioremediation.

Phenazine-1-carboxamide, an Extrolite Produced by Pseudomonas aeruginosa Strain (CGK-KS-1) Isolated from Ladakh and India, and its Evaluation Against Various Xanthomonas spp.

  • Sirisha, K.;Kumar, C. Ganesh;Ramakrishna, Kallaganti Venkata Siva;Gunda, Shravan Kumar
    • 한국미생물·생명공학회지
    • /
    • 제45권3호
    • /
    • pp.209-217
    • /
    • 2017
  • In the enduring investigation of the bioactive microbes, Pseudomonas aeruginosa strain (referred to as CGK-KS-1 (ICTB-315)), isolated from Chumathang hot spring, Ladakh, and India, was identified to possess a major bioactive fraction with antimicrobial and anti-biofilm properties. This bioactive metabolite was purified through bioactivity-guided fractionation. The chemical structure of this major compound was elucidated as phenazine-1-carboxamide (PCN) based on $^1H$ and $^{13}C$ NMR, FT-IR, EI-HR-MS and 2D NMR spectroscopic techniques. In the current study, PCN exhibited antimicrobial activity with MIC values ranging between $1.9-3.9{\mu}g/ml$ against various test human pathogens and Xanthomonas spp. PCN showed the anti-biofilm property with the $IC_{50}$ values ranging from 17.04 to $60.7{\mu}M$ against different test pathogens. The in silico docking studies showed PCN strongly interacted with various proteins of different Xanthomonas spp. with high binding energies. We report herein for the first time the anti-biofilm property and the docking studies of PCN. The extrolite from P. aeruginosa strain CGK-KS-1 showed promising bioactivities and may be considered as a potential candidate for application in various biocontrol strategies.

Current status of natural product industry and its commercial application to health functional foods

  • Park, Jong Dae
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.21-21
    • /
    • 2018
  • Natural product substances have historically served as the most significant also be prepared by source of new leads for pharmaceutical development. They can chemical synthesis(both semisynthesis and total synthesis) and have played a important role in the field of organic chemistry by providing synthetic targets. Rcently, they have also been extended for commercial purpose to refer to medicinal products, health functional foods, dietary supplements and cosmetics from natural sources. A large number of currently prescribed drugs have been either directly derived from or inspired by natural products. However, with the advent of robotics, bioinformatics, high throughput screening(HTS), molecular biology-biotechnology, combinatorial chemistry, in silico(molecular modeling) and other methodologies, the pharmaceutical industry has largely moved away from plant derived natural products as a source for leads and prospective drug candidates. The strategy for natural prduct industry is now changing from drug approaches to health foods by identifying effective natural products as preparations. In Korea, a lot of development of natural product based drugs have been done, but very few on health functional foods. The concept of natural product based health foods is not active components as lead compounds but standardized extracts or preparation mixed with other medicinal plants. The representative material has been recently known to be a standardized ginseng extract "Ginsana G 115" developed by Swiss Pharmaton company. The purpose of this presentation is to underline how natural products research continues to make significant contributions in the domain of discovery and development of new health functional foods. It is proposed to present the development of high value added health food or health functional foods through scientific investigation on efficacy and standardization of new materials form natural products.

  • PDF

선도화합물 탐색을 위한 고효율가상탐색 프로그램 개발 (Developing Virtual Screening Program for Lead Identification)

  • Nam, Ky-Youb;Cho, Yong-Kee;Lee, Chang-Joon;Shin, Jae-Hong;Choi, Jung-Won;Gil, Joon-Min;Park, Hark-Soo;Hwang, Il-Sun;No, Kyoung-Tai
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2004년도 The 3rd Annual Conference for The Korean Society for Bioinformatics Association of Asian Societies for Bioinformatics 2004 Symposium
    • /
    • pp.181-190
    • /
    • 2004
  • The docking and in silico ligand screening procedures can select small sets of lead -like candidates from large libraries of either commercially or synthetically available compounds; however, the vast number of such molecules make the potential size of this task enormous. To accelerate the discovery of drugs to inhibit several targets, we have exploited massively distributed computing to screen compound libraries virtually. The Korea@HOME project was launched in Feb. 2002, and one year later, more than 1200 PC's have been recruited. This has created a 31 -gigaflop machine that has already provided more than 1400 hours of CPU time. It has all owed databases of millions of compounds to be screened against protein targets in a matter of days. Now, the virtual screening software suitable for distributed environments is developed by BMD. It has been evaluated in terms of the accuracy of the scoring function and the search algorithm for the correct binding mode.

  • PDF

Binding Pattern Elucidation of NNK and NNAL Cigarette Smoke Carcinogens with NER Pathway Enzymes: an Onco-Informatics Study

  • Jamal, Qazi Mohammad Sajid;Dhasmana, Anupam;Lohani, Mohtashim;Firdaus, Sumbul;Ansari, Md Yousuf;Sahoo, Ganesh Chandra;Haque, Shafiul
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권13호
    • /
    • pp.5311-5317
    • /
    • 2015
  • Cigarette smoke derivatives like NNK (4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone) and NNAL (4-(methylnitrosamino)-1-(3-pyridyl)-1-butan-1-ol) are well-known carcinogens. We analyzed the interaction of enzymes involved in the NER (nucleotide excision repair) pathway with ligands (NNK and NNAL). Binding was characterized for the enzymes sharing equivalent or better interaction as compared to +Ve control. The highest obtained docking energy between NNK and enzymes RAD23A, CCNH, CDK7, and CETN2 were -7.13 kcal/mol, -7.27 kcal/mol, -8.05 kcal/mol and -7.58 kcal/mol respectively. Similarly the highest obtained docking energy between NNAL and enzymes RAD23A, CCNH, CDK7, and CETN2 were -7.46 kcal/mol, -7.94 kcal/mol, -7.83 kcal/mol and -7.67 kcal/mol respectively. In order to find out the effect of NNK and NNAL on enzymes involved in the NER pathway applying protein-protein interaction and protein-complex (i.e. enzymes docked with NNK/NNAL) interaction analysis. It was found that carcinogens are well capable to reduce the normal functioning of genes like RAD23A (HR23A), CCNH, CDK7 and CETN2. In silico analysis indicated loss of functions of these genes and their corresponding enzymes, which possibly might be a cause for alteration of DNA repair pathways leading to damage buildup and finally contributing to cancer formation.

Analog active valve control design for non-linear semi-active resetable devices

  • Rodgers, Geoffrey W.;Chase, J. Geoffrey;Corman, Sylvain
    • Smart Structures and Systems
    • /
    • 제19권5호
    • /
    • pp.487-497
    • /
    • 2017
  • Semi-active devices use the building's own motion to produce resistive forces and are thus strictly dissipative and require little power. Devices that independently control the binary open/closed valve state can enable novel device hysteresis loops that were not previously possible. However, some device hysteresis loops cannot be obtained without active analog valve control allowing slower, controlled release of stored energy, and is presents an ongoing limitation in obtaining the full range of possibilities offered by these devices. This in silico study develops a proportional-derivative feedback control law using a validated nonlinear device model to track an ideal diamond-shaped force-displacement response profile using active analog valve control. It is validated by comparison to the ideal shape for both sinusoidal and random seismic input motions. Structural application specific spectral analysis compares the performance for the non-linear, actively controlled case to those obtained with an ideal, linear model to validate that the potential performance will be retained when considering realistic nonlinear behaviour and the designed valve control approach. Results show tracking of the device force-displacement loop to within 3-5% of the desired ideal curve. Valve delay, rather than control law design, is the primary limiting factor, and analysis indicates a ratio of valve delay to structural period must be 1/10 or smaller to ensure adequate tracking, relating valve performance to structural period and overall device performance under control. Overall, the results show that active analog feedback control of energy release in these devices can significantly increase the range of resetable, valve-controlled semi-active device performance and hysteresis loops, in turn increasing their performance envelop and application space.

The Arabidopsis beta-carotene hydroxylase gene promoter for a strong constitutive expression of transgene

  • Liang, Ying Shi;Bae, Hee-Jin;Kang, Sang-Ho;Lee, Theresa;Kim, Min Gab;Kim, Young-Mi;Ha, Sun-Hwa
    • Plant Biotechnology Reports
    • /
    • 제3권4호
    • /
    • pp.325-331
    • /
    • 2009
  • To efficiently express a gene of interest in transgenic plants, the choice of promoter is a crucial factor as it directly affects the expression of the transgene that will yield the desired phenotype. The Arabidopsis ${\beta}-carotene$ hydroxylase 1 gene (AtBch1) shows constitutive and ubiquitous expression and was thus selected as one of best candidates for constitutive promoter analysis by both in silico northern blotting and semi-quantitative RT-PCR analysis. To investigate AtBch1 promoter activity, the 1,981-bp 5'-upstream region of this gene was fused with ${\beta}-glucuronidase$ (GUS) and transformed into Arabidopsis. Through the molecular characterization of transgenic leaf tissues, the AtBch1 promoter generated strong activity that drives 1.8- and 2-fold higher GUS expression than the cauliflower mosaic virus 35S (35S) promoter at the transcriptional and translational levels, respectively. Furthermore, the GUS enzyme activity driven by the AtBch1 promoter was 2.8-fold higher than that produced by the 35S promoter. By histochemical GUS staining, the ubiquitous expression of the AtBch1 promoter was observed in all tissues of Arabidopsis. Semi-quantitative RT-PCR analysis with different tissues further showed that this promoter serves as a strong constitutive driver of transgene expression in dicot plants.