• Title/Summary/Keyword: improving accuracy

Search Result 1,558, Processing Time 0.025 seconds

Application of Vocal Properties and Vocal Independent Features to Classifying Sasang Constitution (음성 특성 및 음성 독립 변수의 사상체질 분류로의 적용 방법)

  • Kim, Keun-Ho;Kang, Nam-Sik;Ku, Bon-Cho;Kim, Jong-Yeol
    • Journal of Sasang Constitutional Medicine
    • /
    • v.23 no.4
    • /
    • pp.458-470
    • /
    • 2011
  • 1. Objectives Vocal characteristics are commonly considered as an important factor in determining the Sasang constitution and the health condition. We have tried to find out the classification procedure to distinguish the constitution objectively and quantitatively by analyzing the characteristics of subject's voice without noise and error. 2. Methods In this study, we extract the vocal features from voice selected with prior information, remove outliers, minimize the correlated features, correct the features with normalization according to gender and age, and make the discriminant functions that are adaptive to gender and age from the features for improving diagnostic accuracy. 3. Results and Conclusions Finally, the discriminant functions produced about 45% accuracy to classify the constitution for every age interval and every gender, and the diagnostic accuracy was meaningful as the result from only the voice.

A Study on Improvement of Accuracy using Geometry Information in Reverse Engineering of Injection Molding Parts (사출성형품의 역공학에서 Geometry 정보를 이용한 정밀도 향상에 관한 연구)

  • Kim, Yeon-Sul;Lee, Hui-Gwan;Hwang, Geum-Jong;Gong, Yeong-Sik;Yang, Gyun-Ui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.99-106
    • /
    • 2002
  • This paper proposes an error compensation method that improves accuracy with geometry information of injection molding parts. Geometric information can give an improved accuracy in reverse engineering. Measuring data can not lead to get accurate geometric model, including errors of physical parts and measuring machines. Measuring data include errors which can be classified into two types. One is molding error in product, the other is measuring error. Measuring error includes optical error of laser scanner, deformation by probe forces of CMM and machine error. It is important to compensate these in reverse engineering. Least square method (LSM) provides the cloud data with a geometry compensation, improving accuracy of geometry. Also, the functional shape of a part and design concept can be reconstructed by error compensation using geometry information.

Design of a Laser Welding Machine for the Precision Improvement (용접 정밀도 향상을 위한 레이저 용접기의 구조개선)

  • Ro, Seung-Hoon;Jeong, Pyeung-Soo;An, Jae-Woo;Kang, Hee-Tae;Lee, Tae-Hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.4
    • /
    • pp.197-203
    • /
    • 2010
  • Laser welding is widely used for precision welding because of superior mechanical properties and high productivity. Generally the accuracy of the welding is determined by the distribution of the bead which is affected by the structural vibrations of the equipment. This study was originated to stabilize a laser welding machine to minimize the bead distribution for the precise joining. The structural properties of the laser welding machine have been investigated to analyze the major factors of the vibrations to cause the bead distribution. The ideas for the design improvement have been applied to the simulation model to identify the effects and further to achieve the stability design and to minimize the bead distribution. The result shows that a few simple design alterations can substantially suppress the structural vibrations and improve the welding accuracy. The procedure used for this study can also be applied to similar welding equipments for improving the structural stability and the welding accuracy.

  • PDF

Movie Recommendation System using Social Network Analysis and Normalized Discounted Cumulative Gain (소셜 네트워크 분석 및 정규화된 할인 누적 이익을 이용한 영화 추천 시스템)

  • Vilakone, Phonexay;Xinchang, Khamphaphone;Lee, Hanna;Park, Doo-Soon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.267-269
    • /
    • 2019
  • There are many recommendation systems offer an effort to get better preciseness the information to the users. In order to further improve more accuracy, the social network analysis method which is used to analyze data to community detection in social networks was introduced in the recommendation system and the result shows this method is improving more accuracy. In this paper, we propose a movie recommendation system using social network analysis and normalized discounted cumulative gain with the best accuracy. To estimate the performance, the collaborative filtering using the k nearest neighbor method, the social network analysis with collaborative filtering method and the proposed method are used to evaluate the MovieLens data. The performance outputs show that the proposed method get better the accuracy of the movie recommendation system than any other methods used in this experiment.

Selecting Optimal Basis Function with Energy Parameter in Image Classification Based on Wavelet Coefficients

  • Yoo, Hee-Young;Lee, Ki-Won;Jin, Hong-Sung;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.437-444
    • /
    • 2008
  • Land-use or land-cover classification of satellite images is one of the important tasks in remote sensing application and many researchers have tried to enhance classification accuracy. Previous studies have shown that the classification technique based on wavelet transform is more effective than traditional techniques based on original pixel values, especially in complicated imagery. Various basis functions such as Haar, daubechies, coiflets and symlets are mainly used in 20 image processing based on wavelet transform. Selecting adequate wavelet is very important because different results could be obtained according to the type of basis function in classification. However, it is not easy to choose the basis function which is effective to improve classification accuracy. In this study, we first computed the wavelet coefficients of satellite image using ten different basis functions, and then classified images. After evaluating classification results, we tried to ascertain which basis function is the most effective for image classification. We also tried to see if the optimum basis function is decided by energy parameter before classifying the image using all basis functions. The energy parameters of wavelet detail bands and overall accuracy are clearly correlated. The decision of optimum basis function using energy parameter in the wavelet based image classification is expected to be helpful for saving time and improving classification accuracy effectively.

Improving Urban Vegetation Classification by Including Height Information Derived from High-Spatial Resolution Stereo Imagery

  • Myeong, Soo-Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.5
    • /
    • pp.383-392
    • /
    • 2005
  • Vegetation classes, especially grass and tree classes, are often confused in classification when conventional spectral pattern recognition techniques are used to classify urban areas. This paper reports on a study to improve the classification results by using an automated process of considering height information in separating urban vegetation classes, specifically tree and grass, using three-band, high-spatial resolution, digital aerial imagery. Height information was derived photogrammetrically from stereo pair imagery using cross correlation image matching to estimate differential parallax for vegetation pixels. A threshold value of differential parallax was used to assess whether the original class was correct. The average increase in overall accuracy for three test stereo pairs was $7.8\%$, and detailed examination showed that pixels reclassified as grass improved the overall accuracy more than pixels reclassified as tree. Visual examination and statistical accuracy assessment of four test areas showed improvement in vegetation classification with the increase in accuracy ranging from $3.7\%\;to\;18.1\%$. Vegetation classification can, in fact, be improved by adding height information to the classification procedure.

MMS Accuracy Analysis for Earthwork Site Application (토공현장 적용성 검증을 위한 MMS 정밀도 분석)

  • Park, Jae-woo;Kim, Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.183-189
    • /
    • 2019
  • Researches utilizing the fourth industrial revolution technology are being conducted as a breakthrough for improving the earthworker productivity. In order to make the earthwork site smarter, it is necessary to digitize the construction site topography at first. For this purpose, photogrammetry using drones and LiDAR on MMS have been recently used. The purpose of this study is to analyze the accuracy of LiDAR by installation angles for verifying the application of MMS in the construction site. As a result of comparing the coordinates measured by the total station and the LiDAR, a small error of about 1-2 centimeters was shown. It is confirmed that MMS could be well applied to the earthwork site. In addition, there was no significant difference in the accuracy of the acquired coordinates according to the installation angle of the LiDAR, but the shape of the point clouds was different. The larger the installation angle, the better the shape of the site terrain is measured.

Pest Control System using Deep Learning Image Classification Method

  • Moon, Backsan;Kim, Daewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.9-23
    • /
    • 2019
  • In this paper, we propose a layer structure of a pest image classifier model using CNN (Convolutional Neural Network) and background removal image processing algorithm for improving classification accuracy in order to build a smart monitoring system for pine wilt pest control. In this study, we have constructed and trained a CNN classifier model by collecting image data of pine wilt pest mediators, and experimented to verify the classification accuracy of the model and the effect of the proposed classification algorithm. Experimental results showed that the proposed method successfully detected and preprocessed the region of the object accurately for all the test images, resulting in showing classification accuracy of about 98.91%. This study shows that the layer structure of the proposed CNN classifier model classified the targeted pest image effectively in various environments. In the field test using the Smart Trap for capturing the pine wilt pest mediators, the proposed classification algorithm is effective in the real environment, showing a classification accuracy of 88.25%, which is improved by about 8.12% according to whether the image cropping preprocessing is performed. Ultimately, we will proceed with procedures to apply the techniques and verify the functionality to field tests on various sites.

A Branch Prediction Mechanism With Adaptive Branch History Length for FAFF Information Processing (농림수산식품분야 정보처리를 위한 적응하는 분기히스토리 길이를 갖는 분기예측 메커니즘)

  • Ko, K.H.;Cho, Y.I.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.13 no.1
    • /
    • pp.3-17
    • /
    • 2011
  • Pipelines of processor have been growing deeper and issue widths wider over the years. If this trend continues, branch misprediction penalty will become very high. Branch misprediction is the single most significant performance limiter for improving processor performance using deeper pipelining. Therefore, more accurate branch predictor becomes an essential part of modem processors for FAFF(Food, Agriculture, Forestry, Fisheries)Information Processing. In this paper, we propose a branch prediction mechanism, using variable length history, which predicts using a bank having higher prediction accuracy among predictions from five banks. Bank 0 is a bimodal predictor which is indexed with the 12 least significant bits of the branch PC. Banks 1,2,3 and 4 are predictors which are indexed with different global history bits and the branch PC. In simulation results, the proposed mechanism outperforms gshare predictors using fixed history length of 12 and 13, up to 6.34% in prediction accuracy. Furthermore, the proposed mechanism outperforms gshare predictors using best history lengths for benchmarks, up to 2.3% in prediction accuracy.

Accuracy Improvement of Pig Detection using Image Processing and Deep Learning Techniques on an Embedded Board (임베디드 보드에서 영상 처리 및 딥러닝 기법을 혼용한 돼지 탐지 정확도 개선)

  • Yu, Seunghyun;Son, Seungwook;Ahn, Hanse;Lee, Sejun;Baek, Hwapyeong;Chung, Yongwha;Park, Daihee
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.4
    • /
    • pp.583-599
    • /
    • 2022
  • Although the object detection accuracy with a single image has been significantly improved with the advance of deep learning techniques, the detection accuracy for pig monitoring is challenged by occlusion problems due to a complex structure of a pig room such as food facility. These detection difficulties with a single image can be mitigated by using a video data. In this research, we propose a method in pig detection for video monitoring environment with a static camera. That is, by using both image processing and deep learning techniques, we can recognize a complex structure of a pig room and this information of the pig room can be utilized for improving the detection accuracy of pigs in the monitored pig room. Furthermore, we reduce the execution time overhead by applying a pruning technique for real-time video monitoring on an embedded board. Based on the experiment results with a video data set obtained from a commercial pig farm, we confirmed that the pigs could be detected more accurately in real-time, even on an embedded board.