• Title/Summary/Keyword: improvement of workability

Search Result 121, Processing Time 0.021 seconds

Foundation Properties of Cement Mortar in the Use of Fine Aggregate of Coal Gasification Slag (석탄가스화 용융슬래그를 잔골재로 활용하는 시멘트 모르타르의 기초적 특성)

  • Park, Kyung-Taek;Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.116-122
    • /
    • 2019
  • This study evaluated the properties of Coal gasification slag(CGS) according to the CGS contents of cement mortar condition as a basic step to examine the applicability of CGS as concrete fine aggregate. Flow increased with increasing CGS contents for both Crushed sand a(CSa) and Crushed sand b+Sea sand(CSb+SS), but the amount of air contents decreased to the opposite tendency. Based on 28 days is maximum compressive strength was obtained at CGS 50% when CSa was used and CGS 75% when CSb+SS. The flexural strength were the maximum at 25% and 50% of CGS, but the tendency was similar to the compressive strength. Compared with CSa, the compressive strength and flexural strength 5% higher than those of CSb+SS, in CGS using of were about 5% higher than those of unused CGS. As a result of comprehensive study on the quality of mortar according to the CGS contents, it can be concluded that when CGS is mixed with fine aggregate at about 50%, it can contribute to securing workability and strength development positively so that resource recycling and quality improvement can be achieved at the same time.

Study on the Rational Construction Method Using Analysis of the Case Study of PHC Pile Foundation in Song-Do Area (송도지역 내 PHC 말뚝기초 적용사례분석을 통한 적정 시공방법 연구)

  • Lee, Byengho;Lee, Jonghwi;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.3
    • /
    • pp.55-61
    • /
    • 2011
  • Song-Do international city is the area developed in large-scale land reclamation. Song-Do area consists of reclamation layer, sedimentary layer(loose silt, soft clay and sand alternating) and residual layer from the ground surface. Therefore, using pile foundation is inevitable to build structures safely. In this area, driven PHC piles have been generally constructed in terms of environmental and economic conditions. As a result of analyzing 4 sites in Song-Do district 5 and 7 recently, the method of driving pile has many problems because of existence of rigid soil in sedimentary layer and installation of more than 30m piles. In this case, when installing piles by drive after pre-boring up to appropriate depth, the results of constructability analysis were very good. And in the economic efficiency, although 4% of construction cost rose, it was a very slight increase in comparison with improvement of workability. In the case of the stability, more than 70% compared to the allowable stress of piles was satisfied through the load test. As a result, when PHC piles is installed in Song-Do district, the proper construction method is that piles are located at bearing layer after boring rigid sand layer.

Quality of Dry Cement Mortar for Floor Heating Depending on Water-to-Dry Mortar Rutio (난방을 위한 바닥용 건조 시멘트 모르타르의 혼합수량비 변화에 따른 품질 특성)

  • Park, Sang-Jun;Hwang, Yin-Seong;Lee, Gun-Cheol;Kim, Jong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.3
    • /
    • pp.181-188
    • /
    • 2021
  • In this study, the various performance of dry cement mortar for Korean floor heating system depending on water-to-dry mortar ratios (W/DM) applied in project site was evaluated. According to the experiment conducted, the importance of mixing water for dry cement mortar was revealed by resultant performance or quality of the dry cement mortar for floor finishing by changing W/DM controlled in project site by workers. As the general trend, the flow was increased, and the unit volume weight was decreased with increasing W/DM. Additionally, compressive strength and drying shrinkage were significantly influenced by W/DM. Hence, it can be stated that the adding water for dry cement mortar should be managed precisely since excessively increased W/DM for workability improvement can cause performance degradation of floor mortar with the failures such as excessive bleeding, and severe segregation during the fresh state. As a summary of the study, to achieve a desirable performance of dry cement mortar, approximately 20 % of W/DM can be suggested to be managed in project site.

Durability and Strength of Ternary Blended Concrete Using High Early Strength Cement (조강(早彈)시멘트를 사용(使用)한 3성분계(性分系) 콘크리트의 강도(彈度) 및 내구특성(耐久特性))

  • Hong, Chang-Woo;Jeong, Won-Kyong
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.50-57
    • /
    • 2010
  • Ternary blended concrete(TBC), which contains both fly ash and granulated blast furnace slag, has an initial cost effective and is environment friendly. Furthermore, it has a lot of technical advantages such as the improvement of long term compressive strength, high workability, and the reduction of hydration heat. However, as the use and study on the performance of ternary blended concrete is limited, it is low short term compressive strength. This study was performed to evaluate the characteristics which are a long and short term compressive strengths, permeability and chemical attacks resistance of hardened high early concrete containing slag powder and fly-ash using high early strength cement(HE-TBC). Replacement rate of FA is fixed on 10% and replacement rate of slag powder are 0%, 10%, 20% and 30%. The test results showed that compressive and flexural strength of HE-TBC increased as the slag contents increased from 0% to 30% at the short term of curing. The permeability resistance of HE-TBC(fly ash 10%, blast 30%) was extremely good at the short and long terms. However, high early strength ternary blended concrete had weak on carbonation of chemical attack.

Design Concept of Beams Reinforced by Deformed Bars and Non-Prestressed Strands in Combination (비긴장강연선과 철근이 혼용된 보의 설계방안)

  • Noh, Sam-Young;Jo, Min-Joo;Kim, Jong-Sung;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.18-29
    • /
    • 2013
  • A new precast concrete (PC) beam and column connection system using non-prestressed wire strands was recently developed. The system is composed of one unit of two-storied PC-column and PC-beams with U-shaped ends. The connection part of the column and beams is reinforced by deformed bars and non-prestressed wire strands in combination for the improvement of workability. Structural performance of this system was verified by several experimental studies. The purpose of this study is developing a design concept of the beam reinforced by deformed bars and non-prestressed wire strands in combination, in terms of the cross-sectional analysis, based on the preceded experiment. A minimum and maximum reinforcement ratio and the calculation formula for the strength of flexural member reinforced by reinforcements having different yield strengths are derived based on KBC2009. Under consideration existing research results for the application of high strength reinforcement bars, the design yield strength of the non-prestressed wire strand is suggested. An example for the cross section design, satisfying the serviceability requirements, demonstrates the applicability of the design concept developed in the study.

Development of Optimal TACT Process for Eco-Friendly Demolition Works in Aged Housing Remodeling - Focus on Case Study - (친환경 리모델링 철거공사의 최적 TACT공정 개발 - 사례연구를 중심으로 -)

  • Woo, Joong-Pyung;Kim, Ki-Hyun;Hwang, Young-Gyu;Kim, Kyung-Rai;Cha, Hee-Sung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.1
    • /
    • pp.3-12
    • /
    • 2011
  • Technology based civilization has made a sustained advancement, resulting in economic growth and material prosperity. The outcome was the beginning of environmental destruction. Especially, in regard to construction, it has been recognized as a key culprit for pollution. As such, the construction industry has recently shown interest in the environment, as it has been applying environment friendly method of construction and reducing wastes. As the number of old common housing increases in our country, reconstruction and remodeling are implemented as a means of improvement. However, it can be said that remodeling is the inevitable option because of cost and environmental problems associated with reconstruction. As part of its feature, remodeling work is preceded by removal work. And, removal work inevitably creates construction wastes. Treatment of wastes that takes into consideration environmental aspects is important and for this, removal work that is based on environment friendly remodeling to ensure selective separation must be implemented. Yet, a removal work based on environment friendly remodeling has a lower level of output compared to existing methods. Because remodeling work by its nature has a post construction work which proceeds after it, securing work efficiency is important as the removal work is a critical path activity. Thus, the present study improves the work process of a removal work that is based on environment friendly remodeling so that it becomes a work process that includes work efficiency. For this, as a case study, old common housing has been selected, and a TACT process has been developed which is based on data acquired from environment friendly removal work. And, this study develops an optimal TACT process which is based on environment friendly remodeling by conducting a simulation for a 15 floor apartment.

The Effect of the Mixing Order on PVA Fiber-Reinforced Cementitious Composites with CNTs (CNT 혼입 PVA 섬유보강 시멘트 복합체에서의 배합 순서에 따른 영향)

  • Seong-Hyun Park;Dongmin Lee;Seong-Cheol Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.2
    • /
    • pp.130-137
    • /
    • 2023
  • This study analyzed the effect of mixing order on the flowability, compressive strength, and flexural strength of cement composites reinforced with polyvinyl alcohol(PVA) fibers and multi-walled carbon nanotubes(MWCNTs). The experimental results showed that the addition of CNTs significantly reduced the flowability, and the flowability was considerably affected by the mixing order when CNTs were added. The compressive strength was most effectively improved when water and CNTs solution were mixed first before adding PVA fibers, and the flexural strength was highest when water and CNTs solution were mixed with PVA fibers after dry mixing. However, there was no clear correlation between the flexural toughness and the mixing order. In addition, scanning electron microscopy(SEM) image analysis was conducted to analyze the microstructure. The SEM images showed that CNTs were randomly dispersed through the specimens and contributed to the strength improvement, but the effect of the mixing order was not clearly observed. The main results of this study are expected to be useful for evaluations of workability and material performance of PVA fiber-reinforced cement composites with CNTs.

Theoretical study on rock excavation method by whitelight thermal stress (백열광을 이용한 무진동, 무소음 암반파쇄공법의 이론적 고찰)

  • Choi, Yong-Ki;Han, Hyun-Hee;Kim, Sung-Hwan;Kim, Hak-Joon;Arrison, Norman L.;Kong, Hoon-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.229-234
    • /
    • 2002
  • Nowadays, the blast method is mainly operated in the fields of the rock excavation accompanied by construction site in Korea. Blast method has many merits such as improvement of workability, reducement of operation period, and etc. However, blast operation also create much loss and troubles with the neighbours for the environmental pollutions such as the noise, blast vibration, fly rocks and dusts. Thus, the non-vibration and shallow vibration methods have been used but they have also another problems in the view of the economy and the efficiency in operation. In this study, we had made laboratory tests for the breaking of the various Rock types by White Light Thermal Stress. The tests shows that one unit consuming 500kilowatts of electricity, would go 90 feet a day in tunneling if the tunnel was 16 feet by 16 feet. Also, if a faster rate of tunneling could be handled, other white light units could be added.

  • PDF

Analysis of Factors Influencing the Construction Business Management Success (건설기업의 재무적/비재무적 요인이 경영성과에 미치는 영향분석)

  • Han, Jin-Taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.4
    • /
    • pp.46-54
    • /
    • 2013
  • This research outlined the factors influencing the business management success via analyzing a survey of business principles. The research process has been tested in comparison of both financial factors, which come out of objective data and non-financial factors so relevantly prioritized by combining these factors. In order to specify the factors, a check-list and analyzed essential features of category have been done with interviews and surveys. As consequently proceeding, the authors could deduce that non-financial but analytic factors such as business do-able, technician workability, compensation and benefits etc. play major roles in construction sector. The outcomes consider a construction business as fundamental human labor job as opposed to a manufacture business. On reasoning necessarily more objective research works to be done as developing this research's outcome, it is meaningful in suggesting the pivotal factors influencing the construction business management. Therefore, this research is expected to guide the direction to induce the improvement of business management to be done by further exemplary researches.

Studies on the Effect of Fiber Reinforcing upon Mechanical Properties of Concrete and Crack Mode of Reinforoed Concrete (섬유보강이 콘크리트의 역학적 특성과 철근콘크리트의 균열성상에 미치는 영향에 관한 연구)

  • 박승범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.2
    • /
    • pp.4645-4687
    • /
    • 1978
  • This study was attempted to investigate the mechanical properties of concrete and crack control effects of reinforced concrete with steel and glass fiber. The experimental program includes tests on the properties of fresh concrete containing fibers, compressive strength, tensile strength, flexural strength, Young's modulus, Shrinkage and deformation of steel or glass fiber reinforced concrete. Also this study was carried out to investigate the effect of steel or glass fiber to retard the development in reinforced concrete subject to uniaxial tension and thus facilitate the use of steels of higher strength. The major conclusions that can be drawn from the studies are as follows: 1. The effect of the fibers in various mixes on fresh concrete confirmed that fibers do have a significant effect on the properties of fresh concrete, bringing much more stable and exhibiting a signiflcant reduction in surface bleeding, and that the cohesion is greatly improved and the internal resistance increases with fiber concentration. But the addition of an excess contents and length of fibers brings about the reduction of workability. 2. With the addition of steel fibers(1.5% Vol.) to concrete, the compressive strength as compared with plain concrete showed a very slight increase, but excess addition, over 1.5% Vol. of steel and glass fiber reduced its strength. 3. Splitting tensile strength of fiber reinforced concrete showed a significant increase tendency, as compared with plain concrete. In case of containing steel fiber (2.5%, 30mm), it showed that the maximum increase rate of 1.48 times as much rate, and in case of containing glass fiber (2.5%, 30mm), the increase rate of strength was 1.25 times as much rate. 4. Flexural strength of fiber reinforced concrete showed a significant tendency, as compared with plain concrete. Containing steel fiber (2.5%, 30mm) showed the maximum increase rate of 1.64 times as much rate and containing glass fiber (2.5%, 30mm) showed the increase rate of strength of 1.32 times as much rate, and in general, the 30mm length brougth the best results. 5. The strength ratio ($\sigma$b/$\sigma$c and $\sigma$t/$\sigma$c) increased, when steel fiber's average spacing was up to 3.05mm, but decreased when beyond 3.05mm, and it was confirmed that tensile or flexural strengths of steel fiber reinforced concrete are apparently governed by fiber's average spacing. 6. The compressive strain of fiber reinforced concrete showed a significant increasing tendency as the fiber was added, but Young's modulus. with the addition of steel and glass fibers, showed a slight decrease tendency. And according to the increase of flexural strength, a considerable increase was seen in toughness. 7. With the addition of fiber's the shrinkage of concrete was significantly decreased, in both case of adding steel fibers 12.5%, 30mm, and showed a significant decrease ratio, in average 30.4% and 36.7%, as compared with plain concrete. 8. With the increase of fiber volume fraction and length, the gained stress in reinforcing bar in concrete specimens increased in all crack widths, but at different rates, with the decrease of fiber diameter, the stress showed a considerable increasing tendency. And the duoform steel fibers showed the greatest improvement, as compared with the other types tested. 9. The influence of fiber dimensions in order of significanse on the machanical properties of concrete and the crack control of reinforced concrete was explained as follows: content, length, aspect ratio and dimeter.

  • PDF