• Title/Summary/Keyword: improvement of durability

Search Result 592, Processing Time 0.037 seconds

Study on the Weight Optimization of Excavator Attachments Considering Durability (굴삭기 작업장치 내구 경량 최적화 기법 연구)

  • Kim, Pan-Young;Kim, Hyun-Gi;Park, Jin-Soo;Hwang, Jae-Bong;Song, Kyu-Sam
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.349-353
    • /
    • 2007
  • The main functions of excavator are mainly carried out by excavator attachments such as arm and boom. These components should be designed to be light as well as durable enough because their effects on the whole structure are significant. In this paper, an optimization procedure for lightweight design considering fatigue strength for excavator attachments is presented. The weight of attachments and allowable fatigue stresses at critical areas are used as objective function and constraints, respectively, in which design variables are the thickness of the plates of attachments. The simulated annealing search method is adopted for a global optimization solution. Besides, the response surface method using the artificial neural network is used to simulate constraint function for the sake of practical fast calculation. Some example case of optimization is presented here for a sample excavator. This weight optimization is expected to contribute to a considerable improvement of fuel efficiency of excavator.

  • PDF

Design Improvement for a Planetary Gear System in Hydraulic Drive System (굴삭기 유압 주행시스템의 복합유성기어 시스템 설계개선 연구)

  • Shin, Yoo In;Yoon, Chan Heon;Han, Sung Gil;Park, Seong Gyu;Song, Chul Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.851-856
    • /
    • 2016
  • Planetary gear systems have several advantages over traditional gearboxes with parallel axis gear shafts. The planetary gearbox arrangement also creates greater stability due to the even distribution of mass and increased rotational stiffness. However, gears in planetary gear systems occasionally have a short-life due to wear and breakage by repetitive load during operation time. In this study, we evaluated variables of the strength design for each part and conducted structural analysis of seven cases of the planetary gear system. The result of structural analysis was applied to shape optimization method and obtaining the weight lightening designed value. Subsequently, the planetary gear system was performed to ensure the durability of gears during operation time with miner's rule.

Multi-objective durability and layout design of fabric braided braking hose in cyclic motion

  • Cho, J.R.;Kim, Y.H.
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.403-413
    • /
    • 2017
  • The fabric braided braking hose that delivers the driver's braking force to brake cylinder undergoes the large deformation cyclic motion according to the steering and bump/rebound motions of vehicle. The cyclic large deformation of braking hose may give rise to two critical problems: the interference with other adjacent vehicle parts and the micro cracking stemming from the fatigue damage accumulation. Hence, both the hose deformation and the fatigue damage become the critical issue in the design of braking hose. In this context, this paper introduces a multi-objective optimization method for minimizing the both quantities. The total length of hose and the helix angles of fabric braided composite layers are chosen for the design variables, and the maximum hose deformation and the critical fatigue life cycle are defined by the individual single objective functions. The trade-off between two single objective functions is made by introducing the weighting factors. The proposed optimization method is validated and the improvement of initial hose design is examined through the benchmark simulation. Furthermore, the dependence of optimum solutions on the weighting factors is also investigated.

Dispersion Characteristics of Surface-Modified Graphene Nanoplate in Organic Solvent for Development of Graphene / Epoxy Paint to Protect Concrete (콘크리트 보호용 그래핀/에폭시 도료개발을 위해 표면개질한 그래핀 나노플레이트의 유기용매 분산특성)

  • Seo, Won-Woo;Kim, Gyu-Yong;Yoon, Min-Ho;Lee, Sang-Kyu;Hwang, Eui Chul;Son, Min-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.244-245
    • /
    • 2017
  • This study aims to develop high durability graphene / epoxy paint for durability improvement of construction structure. For the development of graphene / epoxy coatings, first, graphene must remain stable in the polymer. Second, the integrity of graphene and polymer should be ensured. Accordingly, in order to obtain dispersibility, surface modification of graphene nanoplate(GnP) with CH and COOH functional groups and its dispersibility in organic solvents were investigated. Also, Fourier Transform Infrared Spectroscopy(FT-IR) analysis and Atomic Force Microscope(AFM) analysis were performed to confirm whether the functional groups were synthesized by surface modification. As a result, FT-IR and AFM analysis did not confirm the surface modification, but GnP was found to be stable when dispersed in an organic solvent.

  • PDF

Research and development of Hyundai FFVs(flexible fuel vehicles) (현대 FFV(Flexible Fuel Vehicle) 개발)

  • 명차리;이시훈;박광서;박심수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.67-73
    • /
    • 1992
  • This paper describes Hyundai's research and development work on a flexible fuel vehicle (FFV). The work on FFV has been conducted to evaluate its potential as an alternative to the conventional gasoline vehicle. Hyundai FFV described here can be operated on M85, gasoline, or any of their combinations, in which the methanol concentration is measured by an electrostatic type fuel sensor. For that operation, a special FFV ECU(Eletronic Control Unit) has been developed and incorporated in the FFV. The characteristics affecting FFV operation, such as FFV ECU control strategy and injector flow rate, have been investigated and optimized through the experiment. And various development tests have been performed in view of engine performance, durability, cold startability, and exhaust emissions reduction. The exhaust gas aftertreatment system consisting of manifold type catalyst and secondary air injection system shows good emission reduction performance including formaldehyde, and finally, the possibility of the FFVs as the low emission vehicles is evaluated by presenting NMOG(Non-Methane Organic Gases) levels with respect to M0 and M85. With these results, it is concluded that FFV can be a candidate for the low emission vehicles, but more works on its durability improvement is required.

  • PDF

Effects of the Organic Fatty Acid Salts on the Watertightness Properties of the Cementitious Materials (시멘트 재료의 수밀특성에 미치는 유기 지방산 염의 영향)

  • Na, Seung-Hyun;Kang, Hyun-Ju;Ahn, Kwang-Hoon;Song, Myong-Shin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.529-532
    • /
    • 2008
  • The durability of concrete and the water-tightness properties of cementitous material are closely relation. So, water-tightness materials as natural minerals, organic fatty acid, organic fatty salts inorganic materials use for improvement of concrete durability. But these materials are somehow different in water-tightness mechanism. In this study, we studied on hydration properties and water-tightness properties of cementitous materials with zinc-stearate, a kind of organic fatty acid salts.

  • PDF

Evaluation of Corrosion Resistance according to Surface treatment of Installed Ammunition Case(ALDC12) (설치형 탄약 케이스의(ALDC12) 표면처리에 따른 부식 영향성 평가)

  • Jonghyeon Lee;Jonghyeon Lee;Sangbong Lee;Hyemin Park;Namyoung Yu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.457-465
    • /
    • 2024
  • The Remote Control Munition System is a anti-personnel munitions system to replace land mines that are hard to retrieve and can inflict damage on friendly forces and civilians. As operating environments and methods change, quality improvement is necessary to ensure appropriate durability. Therefore, corrosion resistance evaluation was performed according to the surface treatment of ALDC12, the main assembly material. We conduct the potentiodynamic polarization, cyclic corrosion test to perform analysis on corrosion behavior. Additionally, we try to observe the pitting on the surface through SEM analysis. In conclusion, among the three surface treatments, Anodizing surface treatment is judged to be the most suitable for corrosion durability in a field environment.

An Experimental Study on the Alkali-Recovery Performance of Impregnating Alkalization Agent for Deteriorated Concrete by Carbonation (침투성 알칼리성부여제 도포에 의한 중성화된 콘크리트의 알칼리성 회복성능에 관한 실험적 연구)

  • 김무한;강석표;유재강;권영진
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.9-15
    • /
    • 2001
  • The low-durability performance of concrete structure occurs by interactive deterioration factors. In particular, carbonation increased with its time elapse is known as the general manner of deterioration characteristics. Recently, the fundamental researches of the carbonation mechanism, besides method and technique for durability improvement of deteriorated structure are advanced actively. So in this paper, alkali-recovery and maintenance performance when the impregnating alkalization agents are used, are compared and examined quantitively with the basis of past proposed study. As a result, alkali-recovery performance be ensured by impregnating alkalization agent on the carbonated concrete which has low pH by accelerated carbonation test. And alkali maintenance performance was effected by the finishing materials on the alkali recovered concrete.

Evaluation of Chloride Penetration in Concrete with Ground Granulated Blast Furnace Slag considering Fineness and Replacement Ratio (고로슬래그 미분말 콘크리트의 분말도 및 치환율에 따른 염해 저항성 평가)

  • Lee, Hyun-Ho;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.26-34
    • /
    • 2013
  • Durability performance in RC structures varies significantly with changes in cover depth and mix proportions. GGBFS (Ground Granulated Blast Furnace Slag) is very effective mineral admixture and widely used for an improved resistance to chloride attack. In this paper, characteristics such as porosity, compressive strength, and diffusion coefficient are evaluated in GGBFS concrete with 30~70% of replacement ratio and $4,000{\sim}8,000cm^2/g$ of fineness. Through the tests, more dense pore structure, higher compressive strength, and lower diffusion coefficient are obtained in GGBFS concrete, which are evaluated to be more dependent on replacement ratio than fineness. With increasing curing period from 3 to 91 days, porosity decreases to 77.47% and strength increases to 373% in GGBFS concrete. Chloride diffusion coefficient in GGBFS concrete decreases to 64.4% compared with that in OPC concrete, which shows significant improvement of durability performance.

Study of the performance improvement solution and bogie structure of center guided type monorail (중앙 안내방식의 모노레일 대차 구조와 성능 향상 방안에 관한 연구)

  • Kim, Jae-Min;Kim, Myung-Su;Kim, Hak-Soo;Ko, Hyung-Keun;Kim, Kyung-Han
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1249-1254
    • /
    • 2010
  • The bogie structure of center guided type monorail has been applied to Incheon Wolmi Eunha monorail at first in the world, and aluminum alloy material bogie is first ever introduced in Korea. Since bogie transfers vertical and horizontal loads to the track and guide rail as an essential system, its structure should have enough durability and secure excellent operation performance and ride quality. This study presents a suitable structure for center guided type monorail, a system combination method for bogie operation performance and riding quality, and a solution for better bogie frame durability.

  • PDF