• 제목/요약/키워드: improved detection algorithm

검색결과 622건 처리시간 0.025초

An Improved Intrusion Detection System for SDN using Multi-Stage Optimized Deep Forest Classifier

  • Saritha Reddy, A;Ramasubba Reddy, B;Suresh Babu, A
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.374-386
    • /
    • 2022
  • Nowadays, research in deep learning leveraged automated computing and networking paradigm evidenced rapid contributions in terms of Software Defined Networking (SDN) and its diverse security applications while handling cybercrimes. SDN plays a vital role in sniffing information related to network usage in large-scale data centers that simultaneously support an improved algorithm design for automated detection of network intrusions. Despite its security protocols, SDN is considered contradictory towards DDoS attacks (Distributed Denial of Service). Several research studies developed machine learning-based network intrusion detection systems addressing detection and mitigation of DDoS attacks in SDN-based networks due to dynamic changes in various features and behavioral patterns. Addressing this problem, this research study focuses on effectively designing a multistage hybrid and intelligent deep learning classifier based on modified deep forest classification to detect DDoS attacks in SDN networks. Experimental results depict that the performance accuracy of the proposed classifier is improved when evaluated with standard parameters.

수리 형태론을 이용한 texture 영상의 방향성 결함검출 (A directional defect detection in texture image using mathematical morphology)

  • 김한균;윤정민;오주환;최태영
    • 전자공학회논문지B
    • /
    • 제33B권4호
    • /
    • pp.141-147
    • /
    • 1996
  • In this paper an improved morphological algorithm for directional defect detection is proposed, where the defect is parallel to the texture image. The algorithm is based on obtaining the background image while removing the defect by comparing every directional morphological result with max or min except that of defect. The defect can of defect and the background image. For a computer simulation, it is shown that the proposed method has better performance than the conventional algorithm.

  • PDF

Blind Adaptive Multiuser Detection for the MC-CDMA Systems Using Orthogonalized Subspace Tracking

  • Ali, Imran;Kim, Doug-Nyun;Lim, Jong-Soo
    • ETRI Journal
    • /
    • 제31권2호
    • /
    • pp.193-200
    • /
    • 2009
  • In this paper, we study the performance of subspace-based multiuser detection techniques for multicarrier code-division multiple access (MC-CDMA) systems. We propose an improvement in the PASTd algorithm by cascading it with the classical Gram-Schmidt procedure to orthonormalize the eigenvectors after their sequential extraction. The tracking of signal subspace using this algorithm, which we call OPASTd, has a faster convergence as the eigenvectors are orthonormalized at each discrete time sample. This improved PASTd algorithm is then used to implement the subspace blind adaptive multiuser detection for MC-CDMA. We also show that, for multiuser detection, the complexity of the proposed scheme is lower than that of many other orthogonalization schemes found in the literature. Extensive simulation results are presented and discussed to demonstrate the performance of the proposed scheme.

  • PDF

A New Hybrid Algorithm for Invariance and Improved Classification Performance in Image Recognition

  • Shi, Rui-Xia;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • 제9권3호
    • /
    • pp.85-96
    • /
    • 2020
  • It is important to extract salient object image and to solve the invariance problem for image recognition. In this paper we propose a new hybrid algorithm for invariance and improved classification performance in image recognition, whose algorithm is combined by FT(Frequency-tuned Salient Region Detection) algorithm, Guided filter, Zernike moments, and a simple artificial neural network (Multi-layer Perceptron). The conventional FT algorithm is used to extract initial salient object image, the guided filtering to preserve edge details, Zernike moments to solve invariance problem, and a classification to recognize the extracted image. For guided filtering, guided filter is used, and Multi-layer Perceptron which is a simple artificial neural networks is introduced for classification. Experimental results show that this algorithm can achieve a superior performance in the process of extracting salient object image and invariant moment feature. And the results show that the algorithm can also classifies the extracted object image with improved recognition rate.

Using Faster-R-CNN to Improve the Detection Efficiency of Workpiece Irregular Defects

  • Liu, Zhao;Li, Yan
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.625-627
    • /
    • 2022
  • In the construction and development of modern industrial production technology, the traditional technology management mode is faced with many problems such as low qualification rates and high application costs. In the research, an improved workpiece defect detection method based on deep learning is proposed, which can control the application cost and improve the detection efficiency of irregular defects. Based on the research of the current situation of deep learning applications, this paper uses the improved Faster R-CNN network structure model as the core detection algorithm to automatically locate and classify the defect areas of the workpiece. Firstly, the robustness of the model was improved by appropriately changing the depth and the number of channels of the backbone network, and the hyperparameters of the improved model were adjusted. Then the deformable convolution is added to improve the detection ability of irregular defects. The final experimental results show that this method's average detection accuracy (mAP) is 4.5% higher than that of other methods. The model with anchor size and aspect ratio (65,129,257,519) and (0.2,0.5,1,1) has the highest defect recognition rate, and the detection accuracy reaches 93.88%.

수중 음향신호 인식성능 향상 알고리듬 개발 (A Development of Improved Recognition Algorithm for Ultrasonic Signal)

  • 김영진;허경무;우광준
    • 전자공학회논문지SC
    • /
    • 제43권4호
    • /
    • pp.60-66
    • /
    • 2006
  • 장비를 사용해서 해양자원을 탐사하고 개발하기 위해서 수중초음파 통신은 유용한 수단이 된다. 이러한 응용을 위해서는 정보전달 및 원격제어가 필수적인데, 해양환경에서 다양한 형태의 노이즈가 발생하여 제어의 효율성과 수중통신의 신뢰성이 저하 되고 있다. 그래서 기존의 방법은 하드웨어적인 방법으로 제어정보를 수신하고 이를 반복적으로 기준 정보와 비교하는 방법을 사용하고 있어 제어신뢰성이 중요시되는 시스템에서는 효율성이 떨어지고 있다. 따라서 본 연구에서는 해양환경 변화에 따른 영향이 없이 초음파 신호를 인식할 수 있는 수중 초음파신호 검출성능 향상 알고리듬을 제안하려 한다. 제안하는 알고리듬의 적합성을 시뮬레이션을 통하여 확인하였다.

Novel Schemes to Optimize Sampling Rate for Compressed Sensing

  • Zhang, Yifan;Fu, Xuan;Zhang, Qixun;Feng, Zhiyong;Liu, Xiaomin
    • Journal of Communications and Networks
    • /
    • 제17권5호
    • /
    • pp.517-524
    • /
    • 2015
  • The fast and accurate spectrum sensing over an ultra-wide bandwidth is a big challenge for the radio environment cognition. Considering sparse signal feature, two novel compressed sensing schemes are proposed, which can reduce compressed sampling rate in contrast to the traditional scheme. One algorithm is dynamically adjusting compression ratio based on modulation recognition and identification of symbol rate, which can reduce compression ratio. Furthermore, without priori information of the modulation and symbol rate, another improved algorithm is proposed with the application potential in practice, which does not need to reconstruct the signals. The improved algorithm is divided into two stages, which are the approaching stage and the monitoring stage. The overall sampling rate can be dramatically reduced without the performance deterioration of the spectrum detection compared to the conventional static compressed sampling rate algorithm. Numerous results show that the proposed compressed sensing technique can reduce sampling rate by 35%, with an acceptable detection probability over 0.9.

병렬유전자알고리즘을 이용한 탐지노드 선정문제의 에너지 효율성과 수렴성 향상에 관한 해석 (Analysis of Improved Convergence and Energy Efficiency on Detecting Node Selection Problem by Using Parallel Genetic Algorithm)

  • 성기택
    • 한국정보통신학회논문지
    • /
    • 제16권5호
    • /
    • pp.953-959
    • /
    • 2012
  • 센서네트워크에서는 다수의 유휴노드가 존재하며 네트워크의 이상행위 탐지는 이러한 유휴노드를 이용하여 구현될 수 있다. 최적화 문제로 정의된 탐지노드선정 문제에 대하여, 기존의 방법에서는 중앙처리방식의 유전자 알고리즘을 이용하였다. 본 논문에서는 최적 값으로의 수렴 성을 개선함과 동시에 에너지 효율성을 향상시키는 방법으로써 네트워크의 토폴로지 특성을 고려한 병렬유전자알고리즘을 이용한 방법을 제안하였다. 시뮬레이션을 통하여 제안한 방법이 기존의 방법에 비하여 최적 값으로의 수렴이 개선되었음과 에너지 효율적임을 확인하였다.

An improved Big Bang-Big Crunch algorithm for structural damage detection

  • Yin, Zhiyi;Liu, Jike;Luo, Weili;Lu, Zhongrong
    • Structural Engineering and Mechanics
    • /
    • 제68권6호
    • /
    • pp.735-745
    • /
    • 2018
  • The Big Bang-Big Crunch (BB-BC) algorithm is an effective global optimization technique of swarm intelligence with drawbacks of being easily trapped in local optimal results and of converging slowly. To overcome these shortages, an improved BB-BC algorithm (IBB-BC) is proposed in this paper with taking some measures, such as altering the reduced form of exploding radius and generating multiple mass centers. The accuracy and efficiency of IBB-BC is examined by different types of benchmark test functions. The IBB-BC is utilized for damage detection of a simply supported beam and the European Space Agency structure with an objective function established by structural frequency and modal data. Two damage scenarios are considered: damage only existed in stiffness and damage existed in both stiffness and mass. IBB-BC is also validated by an existing experimental study. Results demonstrated that IBB-BC is not trapped into local optimal results and is able to detect structural damages precisely even under measurement noise.

LiDAR 센서기반 근접물체 탐지계측 알고리즘 (Algorithm on Detection and Measurement for Proximity Object based on the LiDAR Sensor)

  • 정종택;최조천
    • 한국항행학회논문지
    • /
    • 제24권3호
    • /
    • pp.192-197
    • /
    • 2020
  • 최근 운송수단의 안전운행 및 사고방지를 목표로 하는 자율운행 관련 기술이 적극적으로 연구되고 있다. 현재 자율운행에서 장애물 탐지를 위하여 레이다 및 카메라 기술이 사용되고 있으나, 근접한 물체의 탐지 및 이격거리의 정밀계측에는 LiDAR (light detection and ranging) 센서를 사용하는 방법이 가장 적합하다. LiDAR 센서는 레이저 펄스빔을 발사하고 물체로부터 반사되어 온 반사빔과의 시간차를 취득하여 이것으로 정밀한 거리를 계산하는 측정기로, 광을 이용하기 때문에 대기환경에서 물체의 인식률이 감소할 수 있는 단점이 있다. 본 논문은 LiDAR 센서의 raw 데이타에 대한 신뢰성 향상과 이를 기반으로 실시간 주변물체에 대한 탐지 및 이격거리 계측에서 오차를 개선하기 위하여 삼각함수에 의한 포인트 cloud를 추출하고, 선형회귀 모델을 이용하여 계측알고리즘을 구현하였으며, Python 라이브러리를 활용하여 물체탐지의 오차범위를 개선할 수 있음을 검증하였다.