DOI QR코드

DOI QR Code

Algorithm on Detection and Measurement for Proximity Object based on the LiDAR Sensor

LiDAR 센서기반 근접물체 탐지계측 알고리즘

  • 정종택 (카네비컴(주)) ;
  • 최조천 (목포해양대학교 해양컴퓨터공학과)
  • Received : 2020.06.03
  • Accepted : 2020.06.27
  • Published : 2020.06.30

Abstract

Recently, the technologies related to autonomous drive has studying the goal for safe operation and prevent accidents of vehicles. There is radar and camera technologies has used to detect obstacles in these autonomous vehicle research. Now a day, the method for using LiDAR sensor has considering to detect nearby objects and accurately measure the separation distance in the autonomous navigation. It is calculates the distance by recognizing the time differences between the reflected beams and it allows precise distance measurements. But it also has the disadvantage that the recognition rate of object in the atmospheric environment can be reduced. In this paper, point cloud data by triangular functions and Line Regression model are used to implement measurement algorithm, that has improved detecting objects in real time and reduce the error of measuring separation distances based on improved reliability of raw data from LiDAR sensor. It has verified that the range of object detection errors can be improved by using the Python imaging library.

최근 운송수단의 안전운행 및 사고방지를 목표로 하는 자율운행 관련 기술이 적극적으로 연구되고 있다. 현재 자율운행에서 장애물 탐지를 위하여 레이다 및 카메라 기술이 사용되고 있으나, 근접한 물체의 탐지 및 이격거리의 정밀계측에는 LiDAR (light detection and ranging) 센서를 사용하는 방법이 가장 적합하다. LiDAR 센서는 레이저 펄스빔을 발사하고 물체로부터 반사되어 온 반사빔과의 시간차를 취득하여 이것으로 정밀한 거리를 계산하는 측정기로, 광을 이용하기 때문에 대기환경에서 물체의 인식률이 감소할 수 있는 단점이 있다. 본 논문은 LiDAR 센서의 raw 데이타에 대한 신뢰성 향상과 이를 기반으로 실시간 주변물체에 대한 탐지 및 이격거리 계측에서 오차를 개선하기 위하여 삼각함수에 의한 포인트 cloud를 추출하고, 선형회귀 모델을 이용하여 계측알고리즘을 구현하였으며, Python 라이브러리를 활용하여 물체탐지의 오차범위를 개선할 수 있음을 검증하였다.

Keywords

References

  1. H. S. Park and H. R. Park, "A study on the policy directions related to the introduction of smart maritime autonomous surface ship (MASS)," in Conference Proceedings of Navigation and Port Research(19), Busan: Korea, pp. 234-235, 2019
  2. S. P. Choi, J. H. Jo, and J. S. Kim, "An filtering automatic technique of LiDAR data by multiple linear regression analysis," Journal of the Korean Society for Geospatial Information Science, Vol. 19, No. 4, pp. 109-118. 2011
  3. F. Castano, G. Beruvides, A. Villalonga, and RE. Haber, “Self-tuning method for increased obstacle detection reliability based on internet of things LiDAR sensor models,” Sensors Journal of Multidisciplinary Digital Publishing Institute, Vol. 18, No. 5, pp. 1508-1523, May 2018.
  4. A. Ferraz, S. Saatchi, C. Mallet, and V. Meyer, "Lidar detection of individual tree size in tropical forests," Journal of Remote Sensing of Environment, Vol. 183, pp. 318-333. Sep. 2016. https://doi.org/10.1016/j.rse.2016.05.028
  5. J. Wijesingha, T. Moeckel, F. Hensgen, and M. Wachendorf, "Evaluation of 3D point cloud based models for the prediction of grassland biomass," International Journal of Applied Earth Observation and Geoinformation, Vol. 78, pp. 352-359. June 2019. https://doi.org/10.1016/j.jag.2018.10.006
  6. Sense Light, 2-Channel. USB-Controlled Constant Fraction Discriminator [Internet]. Available : http://www.sensl.com/downloads/ds/DS-110522_CFD_v1p1.pdf.
  7. Texas Instrument. TDC7200 Time-to-Digital Converter for Time-of-Flight Applications in LIDAR [Internet]. Available : http://www.ti.com/lit/ds/symlink/tdc7200.pdf.
  8. J.-P. Jansson, A. Mantyniemi, and J. Kostamovaara, “A CMOS time-to-digital converter with better than 10 ps single-shot precision,” IEEE Journal of Solid-State Circuits, Vol. 41, No. 6, pp. 1286-1296, May 2006. https://doi.org/10.1109/JSSC.2006.874281
  9. J. J. Yun, An implementation of LiDAR sensor supporting autonomous navigation of unmanned vehicles, Ph. D. dissertation, Mokpo National Maritime University, Korea, Feb. 2017.