• Title/Summary/Keyword: imprinted gene

Search Result 24, Processing Time 0.021 seconds

Functional Prediction of Imprinted Genes in Chicken Based on a Mammalian Comparative Expression Network

  • Kim, Hyo-Young;Moon, Sun-Jin;Kim, Hee-Bal
    • Genomics & Informatics
    • /
    • v.6 no.1
    • /
    • pp.32-35
    • /
    • 2008
  • Little evidence supports the existence of imprinted genes in chicken. Imprinted genes are thought to be intimately connected with the acquisition of parental resources in mammals; thus, the predicted lack of this type of gene in chicken is not surprising, given that they leave their offspring to their own heritance after conception. In this study, we identified several imprinted genes and their orthologs in human, mouse, and zebrafish, including 30 previously identified human and mouse imprinted genes. Next, using the HomoloGene database, we identified six orthologous genes in human, mouse, and chicken; however, no orthologs were identified for SLC22A18, and mouse Ppp1r9a was not included in the HomoloGene database. Thus, from our analysis, four candidate chicken imprinted genes (IGF2, UBE3A, PHLDA2, and GRB10) were identified. To expand our analysis, zebrafish was included, but no probe ID for UBE3A exists in this species. Thus, ultimately, three candidate imprinted genes (IGF2, PHLDA2, and GRB10) in chicken were identified. GRB10 was not significant in chicken and zebrafish based on the Wilcoxon-Mann-Whitney test, whereas a weak correlation between PHLDA2 in chicken and human was identified from the Spearman's rank correlation coefficient. Significant associations between human, mouse, chicken, and zebrafish were found for IGF2 and GRB10 using the Friedman's test. Based on our results, IGF2, PHLDA2, and GRB10 are candidate imprinted genes in chicken. Importantly, the strongest candidate was PHLDA2.

Imprinted Gene mRNA Expression during Porcine Peri-implantation Development

  • Cha, Byung-Hyun;Kim, Bong-Ki;Hwang, Seongsoo;Yang, Byoung-Chul;Im, Gi-Sun;Park, Mi-Rung;Woo, Jae-Seok;Kim, Myung-Jick;Seong, Hwan-Hoo;Cho, Jae-Hyeon;Ko, Yeoung-Gyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.6
    • /
    • pp.693-699
    • /
    • 2010
  • Imprinted genes are essential for fetal development, growth regulation, and postnatal behavior. However, little is known about imprinted genes in livestock. We hypothesized that certain putatively imprinted genes affected normal peri-implantation development such as embryo elongation, initial placental development, and preparation of implantation. The objective of the present study was to investigate the mRNA expression patterns of several putatively imprinted genes during the porcine peri-implantation stages from day 6 to day 21 of gestation. Imprinted genes were selected both maternally (Dlk1, IGF2, Ndn, and Sgce) and paternally (IGF2r, H19, Gnas and Xist). Here, we report that the maternally imprinted gene IGF2 was expressed from day 6 (Blastocyst stage), but Dlk1, Ndn, and Sgce were not expressed in this stage. These genes were first expressed between days 12 and day 14. All the maternally imprinted genes studied showed significantly high expression patterns from day 18 of embryo development. In contrast, paternally imprinted genes IGF2r, H19, Gnas, and Xist were first expressed from day 6 of embryo development (BL). Our data demonstrated that the expression of H19 and Gnas genes was significantly increased from day 14 of the embryo developmental stage, while IGF2r and Xist only showed high expression after day 21. This study is the first to show that the putatively imprinted genes were stage-specific during porcine embryonic development. These results demonstrate that the genes studied may exert important effects on embryo implantation and fetal development.

The Imprinted Messenger RNA Expression in Cloned Porcine Pre-implantation Embryos

  • Park, Mi-Rung;Kim, Bong-Ki;Lee, Hwi-Cheul;Lee, Poong-Yeon;Hwang, Seong-Soo;Im, Gi-Sun;Woo, Jae-Seok;Cho, Chang-Yeon;Choi, Sun-Ho;Kim, Sang-Woo;Ko, Yeoung-Gyu
    • Journal of Embryo Transfer
    • /
    • v.25 no.2
    • /
    • pp.127-131
    • /
    • 2010
  • The objective of this study was to determine the mRNA expression patterns of several putative imprinted genes in in vivo and in vitro fertilized, parthenogenetic, and cloned porcine preimplantation embryos. Both maternally (Dlk1, IGF2, Peg1/Mest and Ndn) and paternally (IGF2r, H19 and Xist) imprinted genes were selected. We have used reverse transcription polymerase chain reaction (RT-PCR) to investigate gene expression patterns in the porcine embryos. IGF2 transcripts were detected in the most of embryos. In nuclear transfer (NT), Peg1/MEST transcripts showed fluctuating pattern. Dlk1 was only expressed partially from the morula and blastocyst stage of NT embryos. Ndn gene expression was started somewhat early for in vivo embryos. However, the expressions of maternally imprinted genes were similar in all types of blastocysts (NT, in vivo and in vitro fertilized, and parthenogenetic embryos). The IGF2R gene expression level was somewhat irregular and varied among samples. However, for the majority samples of all types of embryos, IGF2R expression was diminished after one- to two-cell stages and reappeared at the morulae or blastocyst stage embryos. H19 gene was only expressed early in parthenogenetic and in vivo embryos. For NT embryos, H19 was only expressed in blastocysts. Xist expression was detected in all blastocysts with the earliest being in vivo 8-cell stage embryos and the last one being NT blastocysts. These putative imprinted genes appeared to have stage specific expression patterns with a fluctuating pattern for some genes (Peg/Mest, IGF2r, H19). These results suggest that stage specific presence of imprinted genes can affect the embryo implantation and fetal development.

The mRNA Expression and Methylation Pattern of Apoptosis-related and Imprinted Genes in Day 35 of Cloned Pig Fetuses

  • Jung, Hyun-Ju;Ko, Yeoung-Gyu;Hwang, Seong-Soo;Im, Gi-Sun;Park, Mi-Rung;Woo, Jae-Seok;Park, Choon-Keun;Seong, Hwan-Hoo
    • Reproductive and Developmental Biology
    • /
    • v.31 no.4
    • /
    • pp.227-233
    • /
    • 2007
  • This study was conducted to examine the mRNA expression of apoptosis-related and imprinted genes and methylation pattern of the differentially methylated region (DMR) of H19 gene in day 35 of SCNT pig fetuses. The day 35 of natural mating (control) or cloned (clone) pig fetuses were recovered from uterus. Endometrium from dam and liver from fetus were obtained, respectively. mRNA expression was evaluated by real-time PCR and methylation pattern was analyzed by bisulfite sequencing method. The Bcl-2 mRNA expression in clone was significantly lower than that of control (p<0.05). The mRNA expression of H19 gene in both endometrium and liver was significantly higher in clone than that of control, respectively (p<0.05). The level of IGF-2 mRNA in liver of clone was significantly lower than that of control (p<0.05), whereas the mRNA expression of IGF2-R gene in liver of clone was significantly higher than that of control (p<0.05). The DMR of H19 was lower methylation pattern in clone than that of control. These results suggest that the aberrant mRNA expression of apoptosis-related and imprinted genes and the lower DMR methylation pattern of imprinted gene may be closely related to the inadequate fetal development of cloned fetus.

Comparative Analysis of Repetitive Elements of Imprinting Genes Reveals Eleven Candidate Imprinting Genes in Cattle

  • Kim, HyoYoung;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.893-899
    • /
    • 2009
  • Few studies have reported the existence of imprinted genes in cattle compared to the human and mouse. Genomic imprinting is expressed in monoallelic form and it depends on a single parent-specific form of the allele. Comparative analysis of mammals other than the human is a valuable tool for explaining the genomic basis of imprinted genes. In this study, we investigated 34 common imprinted genes in the human and mouse as well as 35 known non-imprinted genes in the human. We found short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs), and long terminal repeats (LTRs) in imprinted (human and mouse) and control (cattle) genes. Pair-wise comparisons for the three species were conducted using SINEs, LINEs, and LTRs. We also calculated 95% confidence intervals of frequencies of repetitive sequences for the three species. As a result, most genes had a similar interval between species. We found 11 genes with conserved SINEs, LINEs, and LTRs in the human, mouse, and cattle. In conclusion, eleven genes (CALCR, Grb10, HTR2A, KCNK9, Kcnq1, MEST, OSBPL5, PPP1R9A, Sgce, SLC22A18, and UBE3A) were identified as candidate imprinted genes in cattle.

Identification and Epigenetic Analysis of a Maternally Imprinted Gene Qpct

  • Guo, Jing;He, Hongjuan;Liu, Qi;Zhang, Fengwei;Lv, Jie;Zeng, Tiebo;Gu, Ning;Wu, Qiong
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.859-865
    • /
    • 2015
  • Most imprinted genes are concerned with embryonic development, especially placental development. Here, we identified a placenta-specific imprinted gene Qpct. Our results show that Qpct is widely expressed during early embryonic development and can be detected in the telecephalon, midbrain, and rhombencephalon at E9.5-E11.5. Moreover, Qpct is strikingly expressed in the brain, lung and liver in E15.5. Expression signals for Qpct achieved a peak at E15.5 during placental development and were only detected in the labyrinth layer in E15.5 placenta. ChIP assay results suggest that the modification of histone H3K4me3 can result in maternal activating of Qpct.

Heat Stress Causes Aberrant DNA Methylation of H19 and lgf-2r in Mouse Blastocysts

  • Zhu, Jia-Qiao;Liu, Jing-He;Liang, Xing-Wei;Xu, Bao-Zeng;Hou, Yi;Zhao, Xing-Xu;Sun, Qing-Yuan
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.211-215
    • /
    • 2008
  • To gain a better understanding of the methylation imprinting changes associated with heat stress in early development, we used bisulfite sequencing and bisulfite restriction analysis to examine the DNA methylation status of imprinted genes in early embryos (blastocysts). The paternal imprinted genes, H19 and Igf-2r, had lower methylation levels in heat-stressed embryos than in control embryos, whereas the maternal imprinted genes, Peg3 and Peg1, had similar methylation pattern in heat-stressed embryos and in control embryos. Our results indicate that heat stress may induce aberrant methylation imprinting, which results in developmental failure of mouse embryos, and that the effects of heat shock on methylation imprinting may be gene-specific.

Correlation between chromosome abnormalities and genomic imprinting in developing human - 1) Frequent biallelic expression of insulin-like growth factor II (IGF2) in gynogenetic Ovarian Teratomas: Uncoupling of H19 and IGF2 imprinting

  • Choi, Bo-Hwa;Lee, In-Hwan;Chun, Hyo-Jin;Kang, Shin-Sung;Chang, Sung-Ik
    • Journal of Genetic Medicine
    • /
    • v.2 no.1
    • /
    • pp.41-47
    • /
    • 1998
  • Human uniparental gestations such as gynogenetic ovarian teratomas provide a model to evaluate the integrity of parent-specific gene expression - i.e. imprinting - in the absence of a complementary parental genetic contribution. The few imprinted genes characterized so far include the insulin-like growth factor-2 gene (IGF2) coding for a fetal growth factor and H19 gene whose normal function is unknown but it is likely to act as an mRNA. IGF2 is expressed by the paternal allele and H19 by the maternal allele. This reciprocal expression is quite interesting because both H19 and IGF2 genes are located close to each other on chromosome 11p15.5. In situ RNA hybridization analysis has shown variable expression of the H19 and IGF2 alleles according to the tissue origin in 11 teratomas. Especially, Skin, derivative of ectoderm, is expressed conspicuously. We examined imprinting of H19 and IGF2 in teratomas using PCR and RT-PCR of exonic polymorphism. H19 and IGF2 transcript could be expressed either biallelically or monoallelically in the teratomas. Biallelic expression (i.e., loss of imprinting) of IGF2 occurred in 5 out of 6 mature teratomas and 1 out of 1 immature teratoma. Biallelic expression of H19 occurred in 4 out of 10 mature teratomas and 1 out of 1 immature teratoma. Expression levels of H19 and IGF2 transcript using the semi-quantitative RT-PCR had no relation between monoallelic and biallelic expression. Moreover, IGF2 biallelic expression did not affect allele-specificity or levels of H19 expression. These results demonstrate that both genes, H19 and IGF2, can be imprinted, expressed and regulated independently and individually of each other in ovarian teratoma.

  • PDF

Expression of the Brother of the Regulator of Imprinted Sites Gene in the Sputum of Patients with Lung Cancer

  • Lee, Hae Young;Kim, Jong In;Cho, Sung Ho;Ko, Taek Yong;Kim, Hyun Su;Park, Sung Dal;Cho, Sung Rae;Chang, Hee Kyung;Hwang, Guk Jin;Jung, Sang Bong
    • Journal of Chest Surgery
    • /
    • v.47 no.4
    • /
    • pp.378-383
    • /
    • 2014
  • Background: Brother of the regulator of imprinted sites (BORIS) is a putative new oncogene that is classified as a cancer germline gene; however, its role in the development of cancer is unclear. This study investigated the expression of BORIS in lung cancer and its clinical implications. Methods: The expression of BORIS messenger ribonucleic acid (mRNA) in the sputum of 100 patients with lung cancer (50 with squamous cell carcinoma, 36 with adenocarcinoma, and 14 with small-cell carcinoma) was evaluated by reverse transcription polymerase chain reaction. Results: The overall expression rate of BORIS in patients with lung cancer was 36.0%: 19 of 50 squamous cell carcinomas (38.0%), 13 of 36 adenocarcinomas (36.1%), and 4 of 14 (28.6%) small-cell carcinomas. There was no significant difference in the BORIS expression according to age, gender, or histologic type. However, the mRNA expression of BORIS was significantly related to the pathologic cancer stage (p=0.004) and lymph node metastasis (p=0.001). The expression of the melanoma antigen gene family A1-6 was not associated with the expression of BORIS. Conclusion: Our results suggest that the expression of BORIS might be a negative prognostic factor in lung cancers and implicate BORIS as a molecular target for immunotherapy.

DNA Methylation Change of H19 Differentially Methylated Region (DMR) in Day 35 of Cloned Pig Fetuses (돼지 체세포복제 35일령 태아에서 H19 메틸화 가변 영역의 DNA 메틸화 변화)

  • Ko, Yeoung-Gyu;Im, Gi-Sun;Hwang, Seong-Soo;Oh, Keon-Bong;Woo, Jae-Seok;Cho, Sang-Rae;Choi, Sun-Ho;Lee, Poong-Yeon;Yeon, Sung-Heum;Cho, Jae-Hyeon
    • Journal of Embryo Transfer
    • /
    • v.26 no.1
    • /
    • pp.79-84
    • /
    • 2011
  • This study was performed to identify the differentially methylated region (DMR) and to examine the mRNA expression of the imprinted H19 gene in day 35 of SCNT pig fetuses. The fetus and placenta at day 35 of gestation fetuses after natural mating (Control) or of cloned pig by somatic cell nuclear transfer (SCNT) were isolated from a uterus. To investigate the mRNA expression and methylation patterns of H19 gene, tissues from fetal liver and placenta including endometrial and extraembryonic tissues were collected. The mRNA expression was evaluated by real-time PCR and methylation pattern was analyzed by bisulfite sequencing method. Bisulfite analyses demonstrated that the differentially methylated region (DMR) was located between -1694 bp to -1338 bp upstream from translation start site of the H19 gene. H19 DMR (-1694 bp to -1338 bp) exhibits a normal mono allelic methylation pattern, and heavily methylated in sperm, but not in oocyte. In contrast to these finding, the analysis of the endometrium and/or extraembryonic tissues from SCNT embryos revealed a complex methylation pattern. The DNA methylation status of DMR Region In porcine H19 gene upstream was hypo methylated in SCNT tissues but hypermethylated in control tissues. Furthermore, the mRNA expression of H19 gene in liver, endometrium, and extraembryonic tissues was significantly higher in SCNT than those of control (p<0.05). These results suggest that the aberrant mRNA expression and the abnormal methylation pattern of imprinted H19 gene might be closely related to the inadequate fetal development of a cloned fetus, contributing to the low efficiency of genomic reprogramming.