• 제목/요약/키워드: impressed current

검색결과 88건 처리시간 0.019초

Cathodic Protection of Onshore Buried Pipelines Considering Economic Feasibility and Maintenance

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제2권4호
    • /
    • pp.158-168
    • /
    • 2016
  • During the installation of crude oil or gas pipelines, which pass through onshore buried pipelines or onshore pipeline from subsea pipeline to onshore plant, countermeasures need to be implemented so as to ensure a sufficient design life by protecting the steel pipes against corrosion. This can be achieved through impressed current cathodic protection method for onshore pipelines and through galvanic sacrificial anode corrosion protection method for offshore pipelines. In particular, in the case of impressed current cathodic protection, isolation joint flanges should be used. However, this makes maintenance control difficult with its installation having a negative impact on price. Therefore, in this study, the most suitable methodology for onshore pipeline protection between galvanic sacrificial anode corrosion protection and impressed current cathodic protection method will be introduced. In oil and gas transportation facilities, the media can be carried to the end users via onshore buried and/or offshore pipeline. It is imperative for the field operators, pipeline engineers, and designers to be corrosion conscious as the pipelines would undergo material degradations due to corrosion. The mitigation can be achieved with the introduction of an impressed current cathodic protection method for onshore buried pipelines and a galvanic sacrificial anode corrosion protection method for offshore pipelines. In the case of impressed current cathodic protection, isolation joint flanges should be used to discontinuity. However, this makes maintenance control to be difficult when its installation has a negative impact on the price. In this study, the most suitable corrosion protection technique between galvanic sacrificial anode corrosion protection and impressed current cathodic protection is introduced for (economic life of) onshore buried pipeline.

전압 불평형 조건에서 스위칭 소자의 전류용량을 고려한 MMC-HVDC 순환전류 제어기법 (Circulating Current Control in MMC-HVDC Considering Switching Device Current Capacity under Unbalanced Voltage Conditions)

  • 김춘성;정승환;황정구;박성미;박성준
    • 조명전기설비학회논문지
    • /
    • 제30권1호
    • /
    • pp.55-65
    • /
    • 2016
  • This paper proposed a new control method which is capable of controlling circulating current considering current capacity of switching device. In the unbalanced voltage conditions, active power and reactive power have double line frequency. Thus, in order to provide active power without ripple, it is necessary to inject the negative sequence current components. However, when the negative current components is injected, it increases the total current flowing in the Arm, and in the Sub-module(SM) the current more than rated is impressed, which leads to destroy the system. Also, in impressing the circulating current reference of each arm, conventional control method impressed applicable $i_{dck}/3$ in the case of balanced voltage conditions. In the case of unbalanced conditions, as arm circulating current of three phase show difference due to the power impressed to each arm, reference of each arm is not identical. In this study, in the case of unbalanced voltage, within permitted current, the control method to decrease the ripple of active power is proposed, through circulating current control and current limitations. This control method has the advantage that calculates the maximum active power possible to generate capacity and impressed the current reference for that much. Also, in impressing circulating current reference, a new control method proposes to impress the reference from calculating active power of each phase. The proposed control method is verified through the simulation results, using the PSCAD/EMTDC.

Critical Design Issues on the Cathodic Protection Systems of Ships

  • Lee, Ho Il;Lee, Chul Hwan;Jung, Mong Kyu;Baek, Kwang Ki
    • Corrosion Science and Technology
    • /
    • 제6권3호
    • /
    • pp.90-95
    • /
    • 2007
  • Cathodic protection technology has been widely used on ship's outer hull and inner side of ballast water tanks as a supplementary corrosion protection measure in combination with protective organic coatings. Impressed current cathodic protection system is typically opted for the ship's hull and, sacrificial anode system, for ballast water tanks. The anticipation and interest in cathodic protection system for ships has been surprisingly low-eyed to date in comparison with protective coatings. Computational analysis for the verification of cathodic protection design has been tried sometimes for offshore marine structures, however, in commercial shipbuilding section, decades old design practice is still applied, and no systematic or analytical verification work has been done for that. In this respect, over-rotection from un-erified initial design protocol has been also concerned by several experts. Especially, it was frequently reported in sacrificial anode system that even after full design life time, anode was remaining nearly intact. Another issue for impressed current system, for example, is that the anode shield area design for ship's outer hull should be compromised with actual application situation, because the state-of-the-art design equation is quite impractical from the applicator's stand. Besides that, in this study, some other critical design issues for sacrificial anode and impressed current cathodic protection system were discussed.

Al-황동의 응력부식균열 특성에 미치는 인가전위의 영향 (Effect of Impressed Potential on the SCC of Al-Brass)

  • 정해규;임우조
    • 한국해양공학회지
    • /
    • 제18권1호
    • /
    • pp.69-74
    • /
    • 2004
  • In general, the protection method of Shell and Tube Type heat exchanger for a vessel has been applied as a sacrificial anode, which is attached at the inner side of the shell. However, this is an insufficient protection method for tube. Therefore, a more suitable method, such as the impressed current cathodic protection for tube protection, is required. Al-brass is the raw material of tubes for heat exchanger of a vessel where seawater is used for cooling the water. It has a high level of heat conductivity, excellent mechanical properties, and a high level of corrosion resistance, due to a cuprous oxide (Cu$_2$O) layer against th seawater. However, in actuality, it has been reported that Al-brass tubes for heat exchanger of a vessel can produce local corrosion, such as stress corrosion cracking (SCC). This paper studied the effect of impressed potential on the stress corrosion cracking of Al-brass for impressed current cathodic protection in 3.5% NaCl +0.1% NH$_4$OH solution, under flow by a constant displacement tester. Based on the test results, the latent time of SCC, stress corrosion crack propagation, and the dezincification phase of Al-brass are investigated.

역 문제에 의한 파이프의 결함위치 평가 (Estimation of Defect Position on the Pipe Line by Inverse Problem)

  • 박성완
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.139-144
    • /
    • 2011
  • This paper presents a boundary element application to determine the optimal impressed current densities at defect position on the pipe line. In this protection paint, enough current must be impressed to lower the potential distribution on the metal surface to the critical values. The optimal impressed current densities are determined in order to minimize the power supply for protection. This inverse problem was formulated by employing the boundary element method. Since the system of linear equations obtained was ill-conditioned, including singular value decomposition, conjugate gradient method were applied and the accuracies of these estimation. Several numerical examples are presented to demonstrate the practical applicability of the proposed method.

외부전원법을 적용한 철근콘크리트의 방식효과 (The Method Effect of Reinforced Concrete by Applying Impressed Current Cathodic Protection)

  • 이해승;조규환;박동천
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.60-61
    • /
    • 2013
  • For reinforced concrete structures located in a sea environment, the Impressed Current Cathodic Protection (ICCP) is mostly used as a signature method to prevent steel corrosion. For this research, specimens to which the ICCP is applied were manufactured under the assumption of two following cases the specimens are exposed to various salt damage environments (submerged zone, tidal zone), and deteriorative factors (crack) occur in concrete. For the specimens manufactured, an enhancement experiment for deterioration was conducted through regular cycle change under the temperature between 15 ~ 70℃ with 70 ~ 90% humidity. Afterwards, the method effect was verified through a half-cell method and application of the ICCP derived from salt damage environments was investigated.

  • PDF

콘크리트 중의 철근 부식 억제를 위한 외부전원법의 효과 (Effect of Impressed Current System for Corrosion Protection of Rebars in Concrete)

  • 문한영;김성수;김홍삼
    • 콘크리트학회지
    • /
    • 제11권2호
    • /
    • pp.221-230
    • /
    • 1999
  • 콘크리트 구조물에 균열이 생겨 물과 산소의 침투확산이 용이해 지거나 또는 외부로부터 염소이온과 같은 염화물이 침투확산되어 콘크리트 중의 철근까지 도달할 경우 및 콘크리트의 중성화가 철근위치까지 진행될 경우 철근의 부동태 피막은 파괴되어 부식이 급진전 되며 콘크리트의 박리 및 탈락현상이 수반될 뿐만 아니라 구조물의 내구성이 크게 저하된다. 본 연구에서는 콘크리트 중의 철근부식을 억제하기 위한 한 방안으로 적용되는 전기방식의 이론적인 고찰과 콘크리트 내부에 다량의 염화물을 함유시키거나 또는 균열을 발생시킨 시험체에 대하여 외부전원법을 활용한 실내실험을 실시하여 철근의 방식효과에 대해 고찰하였다. 외부전원법에 의한 전기방식을 실시하여 복극량을 측정한 결과 대상 시험체 모두 NACE의 방식기준을 만족하였으며, 부식면적율의 측정결과 34 ~84%, 단면감소의 경우 84 ~ 86%의 방식효과를 확인하였다.

콘크리트 중의 철근부식 방지를 위한 외부전원법의 적용 (The Application of Impressed Current System for the Corrosion Control of Reinforcing Steel in Concrete)

  • 문한영;김성수;김홍삼
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.197-202
    • /
    • 1997
  • Recently the interest in the reinforcing steel corrosion due to the use of sea-sand and deicing salt, marine environment, and carbonation in RC structures is increasing, therefore the studies on the corrosion control of reinforcing steel in concrete are vigorously proceeding. In this study, from the viewpoint of electrochemical process of steel corrosion in concrete we applied the impressed current system among the cathodic protections to reinforcing steel in concrete and ascertained the protection effect by half-cell potential, corrosion rate, and depolarization.

  • PDF

펌프용 SRM의 Sensorless구동방식에 관한 연구 (A study on the Sensorless driving method of the SRM for Pumping system)

  • 손동혁;문지우;조윤현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.134-136
    • /
    • 2008
  • In recent years, the switched reluctance motor have been used many industrial application because of its cost advantage. SRM drivers are accomplished by switching the phase currents on and off synchronously with the rotor position which is fed back to the controller by position may deteriorate in harsh environments and increase the size and cost of the SRM drive system. This paper proposes a position sensorless method that is based on impressed pulse voltage using impressed at unenergised phases to estimate the rotor position. The current value by impressed pulse voltage compare with the threshold value. The rotor position can be estimated by observing the current value. Finally, simulation results compare with the sensor type SRM and confirm the proposed method to be useful.

  • PDF

Investigation of Design Methodology for Impressed Current Cathodic Protection Optimum System

  • Yao, Ping;Wu, Jianhua
    • Corrosion Science and Technology
    • /
    • 제7권4호
    • /
    • pp.197-200
    • /
    • 2008
  • In this paper, physical scale modeling was employed to identify the configurations of ICCP system and the electric field signatures. Computational boundary element modeling technique has been used to simulate the performance of the CP system and to predict the associated electric fields signatures. The optimization methods combined with the computer models and physical scale modeling will be presented here, which enable the optimum system design to be achieved both in terms of the location and current output of the anode but also in the location of reference electrodes for impressed current cathodic protection(ICCP) systems. The combined methodology was utilized to determine optimal placement of ICCP components (anodes and reference electrodes) and to evaluate performance of ICCP system for the 2%, 10% and 14% wetted hull coatings loss. The objective is to design the system to minimise the electric field while at the same time provide adequate protection for the ship. The results show that experimental scale modeling and computational modeling techniques can be used in concert to design an optimum ICCP system and to provide information for quickly analysis of the system and its surrounding environment.