• Title/Summary/Keyword: impossible differential attack

Search Result 11, Processing Time 0.022 seconds

Improved Impossible Differential Attack on 7-round Reduced ARIA-256

  • Shen, Xuan;He, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5773-5784
    • /
    • 2019
  • ARIA is an involutory SPN block cipher. Its block size is 128-bit and the master key sizes are 128/192/256-bit, respectively. Accordingly, they are called ARIA-128/192/256. As we all know, ARIA is a Korean Standard block cipher nowadays. This paper focuses on the security of ARIA against impossible differential attack. We firstly construct a new 4-round impossible differential of ARIA. Furthermore, based on this impossible differential, a new 7-round impossible differential attack on ARIA-256 is proposed in our paper. This attack needs 2118 chosen plaintexts and 2210 7-round encryptions. Comparing with the previous best result, we improve both the data complexity and time complexity. To our knowledge, it is the best impossible differential attack on ARIA-256 so far.

Impossible Differential Cryptanalysis on ESF Algorithm with Simplified MILP Model

  • Wu, Xiaonian;Yan, Jiaxu;Li, Lingchen;Zhang, Runlian;Yuan, Pinghai;Wang, Yujue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3815-3833
    • /
    • 2021
  • MILP-based automatic search is the most common method in analyzing the security of cryptographic algorithms. However, this method brings many issues such as low efficiency due to the large size of the model, and the difficulty in finding the contradiction of the impossible differential distinguisher. To analyze the security of ESF algorithm, this paper introduces a simplified MILP-based search model of the differential distinguisher by reducing constrains of XOR and S-box operations, and variables by combining cyclic shift with its adjacent operations. Also, a new method to find contradictions of the impossible differential distinguisher is proposed by introducing temporary variables, which can avoid wrong and miss selection of contradictions. Based on a 9-round impossible differential distinguisher, 15-round attack of ESF can be achieved by extending forward and backward 3-round in single-key setting. Compared with existing results, the exact lower bound of differential active S-boxes in single-key setting for 10-round ESF are improved. Also, 2108 9-round impossible differential distinguishers in single-key setting and 14 12-round impossible differential distinguishers in related-key setting are obtained. Especially, the round of the discovered impossible differential distinguisher in related-key setting is the highest, and compared with the previous results, this attack achieves the highest round number in single-key setting.

Impossible Differential Cryptanalysis on DVB-CSA

  • Zhang, Kai;Guan, Jie;Hu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1944-1956
    • /
    • 2016
  • The Digital Video Broadcasting-Common Scrambling Algorithm is an ETSI-designated algorithm designed for protecting MPEG-2 signal streams, and it is universally used. Its structure is a typical hybrid symmetric cipher which contains stream part and block part within a symmetric cipher, although the entropy is 64 bits, there haven't any effective cryptanalytic results up to now. This paper studies the security level of CSA against impossible differential cryptanalysis, a 20-round impossible differential for the block cipher part is proposed and a flaw in the cipher structure is revealed. When we attack the block cipher part alone, to recover 16 bits of the initial key, the data complexity of the attack is O(244.5), computational complexity is O(222.7) and memory complexity is O(210.5) when we attack CSA-BC reduced to 21 rounds. According to the structure flaw, an attack on CSA with block cipher part reduced to 21 rounds is proposed, the computational complexity is O(221.7), data complexity is O(243.5) and memory complexity is O(210.5), we can recover 8 bits of the key accordingly. Taking both the block cipher part and stream cipher part of CSA into consideration, it is currently the best result on CSA which is accessible as far as we know.

Research on the Security Level of µ2 against Impossible Differential cryptanalysis

  • Zhang, Kai;Lai, Xuejia;Guan, Jie;Hu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.972-985
    • /
    • 2022
  • In the year 2020, a new lightweight block cipher µ2 is proposed. It has both good software and hardware performance, and it is especially suitable for constrained resource environment. However, the security evaluation on µ2 against impossible differential cryptanalysis seems missing from the specification. To fill this gap, an impossible differential cryptanalysis on µ2 is proposed. In this paper, firstly, some cryptographic properties on µ2 are proposed. Then several longest 7-round impossible differential distinguishers are constructed. Finally, an impossible differential cryptanalysis on µ2 reduced to 10 rounds is proposed based on the constructed distinguishers. The time complexity for the attack is about 269.63 10-round µ2 encryptions, the data complexity is O(248), and the memory complexity is 263.57 Bytes. The reported result indicates that µ2 reduced to 10 rounds can't resist against impossible differential cryptanalysis.

Impossible Differential Attack on 30-Round SHACAL-2 (30 라운드 SHACAL-2의 불능 차분 공격)

  • 홍석희;김종성;김구일;이창훈;성재철;이상진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.3
    • /
    • pp.107-115
    • /
    • 2004
  • SHACAL-2 is a 256 bit block cipher with various key sizes based on the hash function SHA-2. Recently, it was recommended as one of the NESSIE selections. UP to now, no security flaws have been found in SHACAL-2. In this paper, we discuss the security of SHACAL-2 against an impossible differential attack. We propose two types of 14 round impossible characteristics and using them we attack 30 round SHACAL-2 with 512 bit 18y. This attack requires 744 chosen plaintexs and has time complexity of 2$^{495.1}$ 30 round SHACAL-2 encryptions.

An Upper Bound of the Longest Impossible Differentials of Several Block Ciphers

  • Han, Guoyong;Zhang, Wenying;Zhao, Hongluan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.435-451
    • /
    • 2019
  • Impossible differential cryptanalysis is an essential cryptanalytic technique and its key point is whether there is an impossible differential path. The main factor of influencing impossible differential cryptanalysis is the length of the rounds of the impossible differential trail because the attack will be more close to the real encryption algorithm with the number becoming longer. We provide the upper bound of the longest impossible differential trails of several important block ciphers. We first analyse the national standard of the Russian Federation in 2015, Kuznyechik, which utilizes the 16-byte LFSR to achieve the linear transformation. We conclude that there is no any 3-round impossible differential trail of the Kuznyechik without the consideration of the specific S-boxes. Then we ascertain the longest impossible differential paths of several other important block ciphers by using the matrix method which can be extended to many other block ciphers. As a result, we show that, unless considering the details of the S-boxes, there is no any more than or equal to 5-round, 7-round and 9-round impossible differential paths for KLEIN, Midori64 and MIBS respectively.

Searching for Impossible Differential Characteristics of ARX-Based Block Cipher Using MILP (MILP를 이용한 ARX 기반 블록 암호의 불능 차분 특성 탐색)

  • Lee, HoChang;Kang, HyungChul;Hong, Deukjo;Sung, Jaechul;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.3
    • /
    • pp.427-437
    • /
    • 2017
  • Impossible differential characteristics distinguish the corresponding block cipher from random substitution and can also be used for key recovery attack. Recently Cui et al. proposed an automatic method for searching impossible differential characteristics of several ARX - based block ciphers using Mixed Integer Linear Programming(MILP). By optimizing the method proposed by Cui et al., It was possible to find new impossible differential characteristics which could not be founded by the method by using less linear constraint expression than the existing method. It was applied to the SPECK family and LEA using the modified method. We found 7-rounds for SPECK32, SPECK48, SPECK64, SPECK96 and 8-rounds impossible differential characteristics of SPECK128. These impossible differential characteristics are all newly found. We also found existing 10-rounds of impossible differential characteristic and new 10-rounds of impossible differential characteristics of LEA.

Improved Impossible Differential Attacks on 6-round AES (6 라운드 AES에 대한 향상된 불능 차분 공격)

  • Kim Jongsung;Hong Seokhie;Lee Sangjin;Eun Hichun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.3
    • /
    • pp.103-107
    • /
    • 2005
  • Impossible differential attacks on AES have been proposed up to 6-round which requires $2^{91.5}$ chosen plaintexts and $2^{122}$ 6-round AES encryptions. In this paper, we introduce various 4-round impossible differentials and using them, we propose improved impossible differential attacks on 6-round AES. The current attacks require $2^{83.4}$ chosen plaintexts and $2^{105.4}$ 6-round AES encryptions to retrieve 11 bytes of the first and the last round keys.

Related-key Impossible Boomerang Cryptanalysis on LBlock-s

  • Xie, Min;Zeng, Qiya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5717-5730
    • /
    • 2019
  • LBlock-s is the core block cipher of authentication encryption algorithm LAC, which uses the same structure of LBlock and an improved key schedule algorithm with better diffusion property. Using the differential properties of the key schedule algorithm and the cryptanalytic technique which combines impossible boomerang attacks with related-key attacks, a 15-round related-key impossible boomerang distinguisher is constructed for the first time. Based on the distinguisher, an attack on 22-round LBlock-s is proposed by adding 4 rounds on the top and 3 rounds at the bottom. The time complexity is about only 268.76 22-round encryptions and the data complexity is about 258 chosen plaintexts. Compared with published cryptanalysis results on LBlock-s, there has been a sharp decrease in time complexity and an ideal data complexity.

New Higher-Order Differential Computation Analysis on Masked White-Box AES (마스킹 화이트 박스 AES에 대한 새로운 고차 차분 계산 분석 기법)

  • Lee, Yechan;Jin, Sunghyun;Kim, Hanbit;Kim, HeeSeok;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.1
    • /
    • pp.1-15
    • /
    • 2020
  • As differential computation analysis attack(DCA) which is context of side-channel analysis on white-box cryptography is proposed, masking white-box cryptography based on table encoding has been proposed by Lee et al. to counter DCA. Existing higher-order DCA for the masked white box cryptography did not consider the masking implementation structure based on table encoding, so it is impossible to apply this attack on the countermeasure suggested by Lee et al. In this paper, we propose a new higher-order DCA method that can be applied to the implementation of masking based on table encoding, and prove its effectiveness by finding secret key information of masking white-box cryptography suggested by Lee et al. in practice.