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Abstract 

 
MILP-based automatic search is the most common method in analyzing the security of 
cryptographic algorithms. However, this method brings many issues such as low efficiency 
due to the large size of the model, and the difficulty in finding the contradiction of the 
impossible differential distinguisher. To analyze the security of ESF algorithm, this paper 
introduces a simplified MILP-based search model of the differential distinguisher by reducing 
constrains of XOR and S-box operations, and variables by combining cyclic shift with its 
adjacent operations. Also, a new method to find contradictions of the impossible differential 
distinguisher is proposed by introducing temporary variables, which can avoid wrong and 
miss selection of contradictions. Based on a 9-round impossible differential distinguisher, 
15-round attack of ESF can be achieved by extending forward and backward 3-round in 
single-key setting. Compared with existing results, the exact lower bound of differential active 
S-boxes in single-key setting for 10-round ESF are improved. Also, 2108 9-round impossible 
differential distinguishers in single-key setting and 14 12-round impossible differential 
distinguishers in related-key setting are obtained. Especially, the round of the discovered 
impossible differential distinguisher in related-key setting is the highest, and compared with 
the previous results, this attack achieves the highest round number in single-key setting. 
 
 
Keywords: ESF, MILP, related-key attack, differential active S-box, impossible 
differential distinguisher 
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1. Introduction 

With the rapid development of Internet technology, information security becomes 
increasingly important in realizing secure and reliable systems. To this end, many security 
mechanisms are designed and widely used, such as message authentication [1], 
communication encryption, and Blockchain [2]. Among the above security technologies, 
cryptographic algorithm is the cornerstone and dominates the security of the whole system. In 
recent years, low-power devices have been widely used in real world applications as the rapid 
development of radio frequency identification (RFID) [3] technology and wireless sensor 
networks (WSN). With many advantages such as high efficiency, low power consumption and 
less resource requirements, lightweight block ciphers can be easily implemented in hardware 
and software. Thus, it can provide security guarantee for Internet of Things (IoT) [4] and 
resource-constrained environments. At present, many lightweight block ciphers have been 
proposed, for example, PRESENT [5], LBlock [6], LED [7], Midori [8], GIFT [9], SKINNY 
[10]. However, there remains a big concern that whether these lightweight block ciphers can 
resist classic attacks and provide security protection in resource-constrained environments.  

The classical cryptanalysis methods include differential cryptanalysis, linear cryptanalysis, 
related-key analysis, side channel attack and differential fault analysis [11], where differential 
cryptanalysis and linear cryptanalysis are two most basic cryptanalysis methods. The key for 
differential analysis is to find a high-probability differential characteristic, and the estimation 
on the maximum differential characteristic probability can be calculated according to the 
lower bound of differential active S-box. Impossible differential analysis was independently 
proposed by Knudsen [12] and Biham [13] from the differential analysis technology. The key 
of impossible differential analysis is to construct an impossible differential distinguisher to 
obtain the correct key using the differential with zero probability to filter out wrong keys. The 
related-key analysis was proposed by Knudsen [14] and Biham [15] independently, which can 
deduce some information of keys based on the relations of round keys. In order to efficiently 
find the distinguisher of higher round, many automated search methods have been proposed, 
where the mixed integer linear programming (MILP) technology is widely used in block 
cipher analysis. In 2011, Mouha et al. [16] first converted the searching problem for the 
minimum number of active S-boxes into a MILP problem, which was applied to the 
word-oriented block ciphers. Then Sun et al. [17] extended the application of MILP to 
bit-oriented block ciphers, such that the differential characteristic in single-key setting and 
related-key setting on SIMON48, LBlock, DESL and PRESENT-128 were obtained. Cui et al. 
[18] constructed the MILP model for impossible difference and zero correlation linear 
approximation based on existed methods, and proposed a verification algorithm for the 
searched results. In Eurocrypt 2017, Sasaki et al. [19] proposed an impossible differential 
search tool for 8-bit S-boxes, as well as a new algorithm for describing S-boxes with less 
constraint inequalities [20].  

Eight-Sided Fortress (ESF) is a lightweight block cipher based on LBlock [21]. In order to 
achieve faster diffusion and improved security, ESF employs the idea of permutation layer in 
PRESENT and replaces the nibble replacement method in the LBlock with bit-by-bit 
replacement method. This paper mainly focuses on analyzing the security of ESF, where the 
MILP method is employed to automatically search for differential active S-boxes and 
impossible differential distinguishers. However, there are many problems for the MILP model, 
such as a large number of constraints, low efficiency of solution finding and difficulty of 
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verifying impossible difference results.  
In this paper, we propose a simplified MILP-based differential distinguisher search model 

and an improved method to find contradictions of impossible differential distinguishers. Also, 
the key recovery of ESF is implemented. The contribution of this paper is summarized as 
follows: 
1) With the search model proposed by Sasaki, this paper builds a simplified MILP-based 

differential distinguisher search model by reducing the number of XOR and S-box 
operations as well as the number of constraints and variables under the combination of 
cyclic shift with adjacent operations.  

2) For the impossible differential distinguishers verification algorithm proposed by Cui et al., 
a different method is proposed to find contradictions by indirect transmission of 
temporary variables, which replaces the direct transmission between the upper and lower 
rounds.  

3) The tested results show that in single-key setting, the more accurate number of lower 
bounds of 11-round ESF differential active S-box is 14, compared to 10 in related-key 
setting. Also, 2108 9-round impossible differential distinguishers in single-key setting 
and 14 12-round impossible differential distinguishers in related-key setting are obtained. 
The improved verification algorithm is used to find the corresponding contradictions for 
the obtained impossible differential distinguishers, in this way the searched distinguishers 
can be verified.  

4) With the searched impossible differential distinguishers, 15 rounds of ESF are analyzed, 
and the data and time complexity of the impossible differential attack in single-key 
setting are also improved. Specifically, the data complexity is 260.45 and the time 
complexity is 270.02.  

The rest of the paper is organized as follows. Section 2 mainly introduces the notations and 
ESF cipher. In section 3, we introduce the basic MILP model and the verification method of 
the impossible differential distinguisher, and propose an improved MILP model and an 
improved verification method. In section 4, the exact lower bounds of differential active 
S-boxes and impossible differential distinguisher of ESF are given, and key recovery of ESF is 
implemented. The security analysis results are compared in section 5. At last, section 6 
concludes the paper. 

2. Preliminaries 

2.1 Notations 

M：64-bit plaintext 

C： 64-bit ciphertext 

Li：The i-th left branch of 32-bit 

Ri：The i-th right branch of 32-bit 

F：Round function 

K：80-bit master key 

RKi：32-bit subkey 

P：Bit permutation 
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||：Character concatenation  

<<<i：Left rotation of i-bit 

[i]2：Binary representation of i 

⊕：Xor 

2.2 Description of ESF 
ESF is a lightweight block cipher, which adopts the design principles of LBlock and the idea 
of bit permutation in the linear layer of PRESENT to achieve faster diffusion. As shown in Fig. 
1, ESF has a 32-round Feistel structure with 64-bit block size and 80-bit key size. 

F
RK0

RK31

L32

L0 R0

R32

F

7<<<

7<<<

 
Fig. 1. The structure of ESF 

 

Let Li and Ri (i=0,1,…,31) respectively be the left and right branches of ESF, = ||i i iC L R  be 
the input for i-th round, 1 1 1= ||i i iC L R+ + +  be the output, and iRK  be the round key. The update 
process from ( , )i iL R  to 1 1( , )i iL R+ +  is shown as follows:  

 +1

1

= ||
( 7) ( , )

i i i

i i i i

i i

C L R
R L F R RK
L R+


 = <<< ⊕
 =  

 (1) 

As shown in Fig. 2, the round function F of ESF employs the SPN structure, where each 
round includes a Substitution Layer (S-box_layer), a Permutation Layer (P_Layer), and a 
Round Key. 

32-bit right branch X

Bit-wise permutation

 32-bit output of round function

0S1S2S3S4S5S6S7S

   

 
Fig. 2. The round function of ESF 
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S-box_Layer. ESF uses 8 different 4-bit S-boxes in parallel, which are shown in Table 1 in 
hexadecimal. 

Table 1. The S-Boxes of ESF 

x 0 1 2 3 4 5 6 7 8 9 a b c d e f 
S0[x] 3 8 f 1 a 6 5 b e d 4 2 7 0 9 c 
S1[x] 

 
 
 

f c 2 7 9 0 5 a 1 b e 8 6 d 3 4 
S2[x] 

 
8 6 7 9 3 c a f d 1 e 4 0 b 5 2 

S3[x] 0 f b 8 c 9 6 3 d 1 2 4 a 7 5 e 
 S4[x] 1 f 8 3 c 0 b 6 2 5 4 a 9 e 7 d 

S5[x] f 5 2 b 4 a 9 c 0 3 e 8 d 6 7 1 
S6[x] 7 2 c 5 8 4 6 b e 9 1 f d 3 a 0 
S7[x] 1 d f 0 e 8 2 b 7 4 c a 9 3 5 6 

 
Permutation Layer P. ESF uses the following method to realize permutation from 

31 30 1 0( || || ... || || )b b b b  to 31 30 1 0( || || ... || || )c c c c : 
 4 4 +1 4 +2 4 +3 8 16 24 7|| || || || || || 0,1, ,j j j j j j j jb b jb b c c c c+ + +→ = …，  (2) 

 
Key schedule. In order to reduce hardware implementation area and increase the key loading 
speed, the design of key schedule is simple. Suppose the 80-bit master key is denoted as 

79 78 77 2 1 0...K k k k k k k= . The master key is stored in the register, so that the 32-bit round key of 
each round is taken from the leftmost 32-bit in the register for i=1,2,…,31. The key schedule is 
updated as follows. 

 79 78 77 76 0 79 78 77 76

75 74 73 72 0 75 74 73 72

47 46 45 44 43 47 46 45 44 43 2

13
[ ] [ ]
[ ] [ ]
[ ] [ ] [ ]

K
k k k k S k k k k
k k k k S k k k k
k k k k k k k k k k i

<<<
 =
 =
 = ⊕

 (3) 

 

3. Bit-oriented MILP model 
This section introduces the construction method for the basic bit-oriented MILP model, 
including the search algorithm of the accurate lower bound of the differential active S-box and 
the impossible differential distinguisher with regard to single-key and related-key. Moreover, 
the optimization technology for the basic MILP model is proposed, and an improved 
verification algorithm for impossible differential distinguisher is presented. 

3.1 Basic MILP model for searching differential distinguisher 
MILP is an optimized production technology in operation research, whose purpose is to solve 
the maximum or minimum value of the objective function under certain constraints. The 
automated search method based on MILP has been widely used in the security analysis of 
cryptographic ciphers. In order to solve the MILP model, the tool of Gurobi [22] is used. 
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MILP is defined as follows: 
Def. 1. Under the constraint conditions Ax b≤ , find the vector 1 2( , ,..., )nx x x x=  such that 

1 1 2 2 ... n nc x c x c x+ + +  gets the maximum or minimum value, where Rm nA ×∈ , Rmb∈ , 

1 2( , ,.. ) R., n
nc c c ∈ , and R is set as an integral domain. 

The main operations of lightweight block cipher usually include XOR, S-box, cyclic shift 
and bit permutation. Among them, the cyclic shift and bit permutation operations only change 
the position of bits and don’t need to construct the any constraints. For S-box and XOR 
operations, the constraints can be defined as follows. 

S-box: a 0-1 variable is used to describe the active state of S-box, where =1tA  means the 
S-box is active, otherwise not active. tA  can be described as follows. 

 
1, input differential of S-box is nonzero
0, otherwisetA 

= 


 (4) 

 
Then min tA∑  is chosen as the objective function of MILP to determine the lower bound 

of active S-box. 
Suppose 0 1 2 3( , )x x x x∆ ∆ ∆ ∆, ,  and 0 1 2 3( , )y y y y∆ ∆ ∆ ∆, ,  are respectively the input and output 

differences of the 4-bit S-box, and tA  is the active state of S-box. If the input difference is 
non-zero, that is, at least one bit of 0 1 2 3( , )x x x x∆ ∆ ∆ ∆, ,  is active, then 1tA = . The inequality 
constraints are defined as follows: 

 

0

1

2

3

0
0

  
0
0

t

t

t

t

x A
x A
x A
x A

∆ − ≤
∆ − ≤
∆ − ≤
∆ − ≤

 (5) 

 
Conversely, when 1tA = , at least one of 0 1 2 3,x x x x∆ ∆ ∆ ∆, ,  is active, for which the 

inequality constraint can be defined as follows: 
 0 1 2 3 0tx x x x A∆ + ∆ + ∆ + ∆ − ≥  (6) 
 
In order to describe the difference properties of S-box more accurately, according to the 

method proposed by Sun et al. [17], the SageMath software can be used to generate the convex 
hull H-expression from all the differential propagation patterns of S-box. Due to the large 
numbers of the generated constraints, as the dimension of the S-box increases, the constraints 
grow rapidly. To reduce the redundant constraints, Sun et al. proposed a greedy algorithm to 
reduce the convex hull H-expression and the numbers of constraints. For the ESF algorithm, 
the numbers of constraints of  S-boxes are summarized in Table 2: 
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Table 2.  The Numbers of Constraints of S-Boxes of ESF 

S-Box The Numbers of H-Represetation 
of the Convex Hulls 

The Numbers of Constraints by 
Greedy Algorithm 

S0 327 21 
S1 327 21 
S2 325 21 
S3 368 27 
S4 321 23 
S5 321 23 
S6 327 21 
S7 368 27 

 
XOR: For i i ia b c∆ ⊕∆ = ∆ , the inequality constraints are defined as follows: 

 

2

  

2

i i i i

i i

i i

i i

i i i

a b c d
d a
d b
d c

a b c

∆ + ∆ + ∆ ≥
 ≥ ∆ ≥ ∆
 ≥ ∆
∆ + ∆ + ∆ ≤

 (7) 

 
where {0,1}id ∈  is a dummy variable. 

According to the above constraints, a MILP model can be constructed to search for the 
accurate lower bound of the differential active S-box. For the search of impossible differential 
distinguisher, the objective function needs to be set to null, and the constraint conditions that 
limiting the input/output differences should be added to the model. Suppose in∆  and out∆  
respectively represent input and output difference sets of cipher. When the solution of the 
model cannot be found by Gurobi, an impossible difference distinguisher in out∆ → ∆/ will be 
obtained. 

The automated search algorithm is shown in Algorithm 1 [19]: 
Algorithm 1: Automatic Search Algorithm of Differential Distinguisher 
Input: r-round, inequality constraints of nonlinear layer and linear 
layer，GOAL∈{ Differential, Impossible Differential}, in∆  and out∆  
Output: lower bound of r-round differential active S-box, impossible differential 
distinguisher 
1) Initialization; 
2) For ( j = 0 , j < r , j ++ ){ 
3)   add nonlinear layer constraints; 
4)   add linear layer constraints; 
5) } 
6) if (GOAL = Differential){ 
7)   add objective function; 
8)   add initial constraints: at least 1-bit input differential is active; 
9)   construct an accurate lower bound search model M for differential active 

S-box; 
10)   solve the model with Gurobi; 
11) } 
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12) else if (GOAL = Impossible Differential){ 
13)   set the objective function to empty; 
14)   For ( input difference ix in∆ ∈∆ ){ 
15)     For ( output difference iy out∆ ∈∆ ){ 
16)       Construct impossible differential model M according to the input/output 

differences; 
17)       solve the model with Gurobi; 
18)       if ( M.status == INFEASIBLE )          // Model has no solution 
19)           Record the difference between input and output; //An impossible 

difference 
20)         } 
21)      } 
22)  } 
23) return differential lower bound of the number of active S-boxes or impossible 

differential distinguisher in out∆ → ∆/ ; 
 
By combining difference analysis with related-key analysis, a special key difference can be 

constructed for XOR offsetting input difference, which can reduce the lower bound of the 
active S-box and expand the number of distinguisher rounds. To construct the MILP model in 
related-key setting, it only needs to add the key schedule to the MILP model in single-key 
setting. 

3.2 Improved MILP-based model for searching differential-like distinguisher 
Based on the MILP construction method in Section 3.1, the corresponding models can be 
constructed for different cryptographic ciphers. However, as the search rounds increases, the 
number of constraints and variables will increase rapidly. To solve this problem, the redundant 
inequality and variable description operations should be reduced as much as possible under the 
correct constraints in constructing MILP of ESF. The simplified model enables the solver to 
efficient find expected solutions. 

Firstly, according to [23], the formula (5) can be reduced to obtain the following inequality. 
Note that 24 constraints can be reduced per round if inequality (8) is used to describe the 
non-zero state of S-box input difference. 

 0 1 2 3+ + + 4 0   tx x x x A∆ ∆ ∆ ∆ − ≤  (8) 
 

Secondly, since all variables are 0-1 variables in XOR operations, Cui et al. [18] reduced 
formula (7) to the following equation. According to this equation, 4 constraints can be reduced 
for each XOR operation. 

 2i i i ia b c d∆ + ∆ + ∆ = ∆  (9) 
 

Thirdly, based on MILP, cyclic shift and bit permutation operations only focus on the 
change of position and constructing the corresponding equality constraints. The cyclic shift 
operation and XOR operation in ESF are adjacent operations by analyzing the structure of ESF. 
MILP for ESF can be constructed as in the following inequality, which takes the constraints of 
cyclic shift as the input to the XOR operation: 

 1( 7)+ ( , )+ 2 , ( 0,1,...,31) i i i i iL F R RK R d i+<<< = ∆ =  (10) 
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Therefore, since there is no need to construct cyclic shift operations separately, 32 
inequality constraints and 32 variables can be reduced in each round, which makes the model 
structure more compact and the number of constraints and variables reduced. 

3.3 Improved verification algorithm for impossible differential distinguisher 
In order to obtain the differential propagation path and verify the correctness of the model, the 
verification on the differential active S-boxes MILP model can be performed by getting the 
value of each variable through getVars() in Gurobi. However, Gurobi can only determine 
whether the model has solution in searching impossible differential distinguisher. Thus, it is 
impossible to obtain the propagation path of the impossible difference and the position of 
contradiction points, which reduces the reliability of the impossible differential distinguisher 
searched by this method. 

3.3.1 Verification process for impossible differential distinguisher 
Based on the miss-in-the-middle technology [24], Cui et al. proposed a verification algorithm 
to check the correctness of the impossible differential distinguisher [18] searched by MILP. 
When a r-round impossible differential distinguisher is found, the connection between round 
⌈r/2⌉ and round ⌈r/2⌉+1 is deleted as much as possible if the model has no solution, and the 
remain bits are determined as a contradiction. Assuming that the contradiction position has 
t-bit (0<t<n), there must be no intersection between all possible differential set A of t-bit 
obtained by input differential encryption and all possible differential set B of t-bit obtained by 
output differential decryption. The specific process is shown in Algorithm 2 [18]. 
 

Algorithm 2 Verification method of impossible differential distinguisher  
Input: Round R, impossible differential distinguishers in out∆ → ∆/  
Output: t-bit contradiction, set A and set B 
1) Initialization; 
2) Under the premise that the model has no solution, remove the inequalities 

between round ⌈r/2⌉ and round ⌈r/2⌉+1. Assume that after the connection of 
some bits is cut off, there are remain t-bit connected; 

3) Fixed input differential in∆ , construct model M1 for rounds 0~⌈r/2⌉; 
4) Traverse all the difference sets of t-bit in model M1, then add t-bit possible 

differences into set A; 
5) Fixed output differential out∆ ，construct model M2 for rounds ⌈r/2⌉+1~r; 
6) Traverse all the difference sets of t-bit in model M2, then add t-bit possible 

differences into set B; 
7) return t-bit contradiction, set A and set B; 

3.3.2 Improved verification process for impossible differential distinguisher 
Analysis showed that Algorithm 2 has some shortcomings to find contradictions. Firstly, it is 
easy to make mistakes or miss the inequality to be deleted in the complex MILP model. 
Secondly, the integrity of the model would be destroyed if the corresponding inequality is 
removed. To solve these issues, this paper proposes a more effective verification method for 
the searched impossible differential distinguisher. 
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In the process of verifying impossible differential distinguisher, let 0 1( , ,..., )jout out out∆ ∆ ∆  be 

the output in round ⌈r/2⌉, 0 1( , ,..., )jin in in∆ ∆ ∆  be the input to round ⌈r/2⌉+1, and 

0 1 0 1( , ,..., ) ( , ,..., )j jout out out in in in∆ ∆ ∆ → ∆ ∆ ∆  be the propagation process. In searching for 

contradictions, our method does not directly delete the relevant inequalities when the model 
has no solution, but a set of temporary variables 0 1( , ,..., )jα α α  are added so that the direct 

propagation between the upper and lower rounds can be replaced by the transfer of temporary 
variables in bit propagation, that is: 

 
0 1 0 1

0 1 0 1

( , ,..., ) ( , ,..., )
  

( , ,..., ) ( , ,..., )
j j

j j

out out out
in in in

α α α

α α α

∆ ∆ ∆ →
 → ∆ ∆ ∆

 (11) 

In searching for contradictions, the temporary variables are removed in sequential. If the 
model changes from no solution to be solvable after some temporary variables are removed, 
then the bit position of this temporary variable is considered as the contradictory point. 

The improved verification algorithm maintains the integrity of the MILP model by deleting 
temporary variables instead of directly deleting the inequalities of the model. Also, when 
sequentially deleting the temporary variables in finding the contradictory points, there is no 
need to find the position of the inequality as in the original method, which is more efficient and 
avoids the wrong or missed selection. The detailed improvement operation process is shown in 
Algorithm 3: 

Algorithm 3 Improved method of finding contradictory points 

Input: Round r, temporary variable set 0 1( , ,..., )jA α α α=  

Output: t-bit contradiction 
1) Initialization; 
2) In the output of r-round, that is, the position of input of (r+1)-round, add a 

temporary variable αj to block the direct transmission between the upper and lower 
rounds; 

3) For ( j = 0,  j < |A|,  j ++ ) {      // |A| denotes the size of A 
4)   Delete temporary variables αj; 
5)   If (the model has solution) 
6)     This bit is a contradiction； 
7)   else if (the model has no solution)   
8)     This bit is a non-contradictory point; 
9) } 
10) return t-bit contradiction; 

4. Security analysis of ESF 
In the single-key and related-key setting, an optimized search model for the exact lower bound 
of differential active S-boxes and impossible differential distinguisher is constructed for ESF, 
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and Gurobi is used to solve the model. The results are as follows. 

4.1 Exact lower bounds of the number of differential active S-boxes 
The exact lower bounds of differential active S-boxes in single-key setting and related-key 
setting of ESF for rounds 1 to 11 are shown in Table 3. 

 
Table 3. Results for differential active S-boxes in single-key setting and related-key setting on ESF  

Rounds Single-key  Related-key Rounds Single-key  Related-key 
1 0 0 7 8 4 
2 1 0 8 9 5 
3 2 0 9 11 6 
4 3 0 10 13 8 
5 4 1 11 14 10 
6 6 2    

 

With the proposed method, the accurate lower bound of 11-round differential active 
S-boxes in single-key setting is 14. Since the optimal differential probability of  S-box is 2-2, 
the maximum differential probability of full-round ESF would be (2-2)14+14+13=2-82<2-64. Thus, 
the full-round ESF is sufficiently secure to resist differential attack. In particular, the number 
of 10-round differential active S-box is 13, which is a more accurate boundary compared with 
existing results. 

4.2 Search results and verification of impossible differential distinguisher 
Based on impossible differential MILP in single-key model of ESF, due to high time 
complexity of traversing all input/output differential sets, the case that a half byte active of 
input/output differential (excluding zero differentials) is picked. By traversing 

( )2( ) 16 15in out→∆ = ×∆ times, 2108 9-round impossible differential distinguisher of ESF in 
single-key setting can be finally found. Some partial searched results are shown in Table 4, 
where  in∆  and out∆  represent input and output differences respectively, the result is 
expressed in hexadecimal number, and 0 denotes zero difference. 

 

Table 4. The partial results of the impossible differential distinguishers on ESF in single-key setting 

in out∆ → ∆/  

0000000080000000 0000000000000008→/  
0000000080000000 0000000000000020→/  
0000000080000000 0000000000000040→/  
0000000080000000 0000000000000080→/  
0000000080000000 00000000000000 0a→/  
0000000080000000 00000000000000 0c→/  

 

According to the improved algorithm for verification of impossible differential 
distinguisher presented in Section 3.3, taking the first single-key impossible differential in 
Table 4 as example, namely 0000000080000000 0000000000000008→/ , 11 contradictory 
points can be found at the output of round 5. The specific steps for searching contradictions are 
as follows: 
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（1） Fixed input difference =0000000080000000in∆ , build model M1 for rounds 1~5, 
traverse 211 difference cases, set A contains 2046 cases except all zero differences; 

（2） Fixed output difference =0000000000000008out∆ , build model M2 for rounds 6~9, 
traverse 211 difference cases, set B only contains all zero differences; 

（3） There is no intersection between sets A and B, thus the current path is an impossible 
differential distinguisher in single-key setting. 

Based on the impossible MILP model in related-key setting of ESF, the case that the master 
key differential with Hamming weight 1 and the input/output differential with Hamming 
weight less than or equals to 1 is considered, that is, 80×65×65 times are traversed and 14 
impossible differential distinguishers in related-key setting of 12-round ESF are searched. The 
partial searched results are shown in Table 5, where in∆ , out∆ , K∆  represent input, output 
and master key differences, respectively, the result is expressed in hexadecimal, and 0 
represents zero difference. 

 

Table 5. The partial results for impossible differential distinguisher of ESF in related-key setting 
in out∆ → ∆/  K∆  

0000000000000000 0004000000000000→/  00000000000000000008  
0000000000000000 0008000000000000→/  00000000000000000010  
0000000000000000 0010000000000000→/  00000000000000000020  
0000000000001000 0000000000000000→/  00001000000000000000  
0000000000000400 0000000000000000→/  00000400000000000000  
0000000000000200 0000000000000000→/  00000200000000000000  

 
Similarly, taking the first impossible differential distinguisher in related-key setting in 

Table 5 as example for verification, 12 contradictions can be found at the output of round 6. 
The specific steps to search for contradictions are as follows: 
（1） Fixed the master key difference =00000000000000000008K∆  and the input 

difference =0000000000000000in∆ , build model M1 for rounds 1~6, traverse all 212 
cases, set A only contains 0x0001; 

（2） Fixed output difference =0004000000000000out∆ , build model M2 for rounds 7~12, 
set B contains the remaining 4095 difference cases; 

（3） There is no intersection between sets A and B, thus the current path is an impossible 
differential distinguisher in related-key setting. 

4.3 Key Recovery 
With the first 9-round impossible differential distinguisher in Table 4, a 15-round impossible 
differential attack on ESF can be obtained by extending 3-round forward and 3-round 
backward, which is shown in Fig. 3. 
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Fig. 3. The 15-round impossible differential attack on ESF 

 
This attack needs to guess 72-bit K0

5-8, K0
13-16, K0

21-24, K0
29-32, K1

5-8, K12
29-32, K13

5-8, K13
13-16, 

K13
21-24, K13

29-32 and K14. The relationship of the guessed subkey and the master key is shown in 
Table 6. 

Table 6. The relationship of the subkey and master 
Subkey to be guessed Master key corresponding to subkey 

K0
5-8，K0

13-16，K0
21-24，K0

29-32 K75，K74，K73，K72，K67，K66，K65，K64，K59，

K58，K57，K56，K51，K50，K49，K48 
K1

5-8 K62，K61，K60，K59 
K12

29-32 K55，K54，K53，K52 
K13

5-8，K13
13-16，K13

21-24，K13
29-32 K66，K65，K64，K63，K58，K57，K56，K55，K50，

K49，K48，K47，K42，K41，K40，K39 
K14 K57，K56，K55，K54，K53···K26 

 
If K14 is known, the master key k[57, 56, …, 27, 26] will be available. Thus, K0

29-32, K0
21-22, 

K12
29-32, K13

21-24, K13
29-32 can be deduced. According to the dependency of the key schedule, 

only 58-bit subkeys K14, K0
5-8, K0

13-16, K0
23-24, K1

5-8,K13
5-8, K13

13-16, K13
21-24 need to be guessed. 

1) Select 2m plaintext, from which the data pairs satisfying L0=(*0*0 *0*0 *0*0 *0*0 *0*0 
*0*0 *0*0 *0*0) and R0=(0000 000* 0000 000* 0000 000* 0000 000*) are filtered out, 
where * indicates that the bit can take any value. Therefore, a structure has 220 plaintexts, 
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which constitutes 220×220×2-1=239 data pairs. After 15 rounds of ESF encryption, 2m+39 
ciphertext pairs can be obtained. 

2) Filter out ciphertexts satisfying ∆L15=(0*0* 0*0* 0*0* 0*0* 0*0* 0*0* 0*0* 0*0*) and 
∆R15=(**** **** **** **** **** **** **** ****). 2m+39×2-16=2m+23 data pairs would 
remain. 

3) Guess K14. Filter out the difference satisfying ∆L14= (*000 0000 *000 0000 *000 0000 
*000 0000), according to R14=L14>>>7 and L14=P∙S(R14⨁K14) ⨁R15, 2m+23×2-28=2m-5 data 
pairs can be filtered out. Guess the key K14[1-32] bit by bit, taking K14

1-4 as an example, 
check whether all values of ∆L14[1,9,17,25] are 0. If so, the data pairs at the corresponding 
positions can be filtered out. If it is an uncertain difference, the data pairs cannot be 
filtered. The number of calculations in this process is about 0.25×∑2m+(27-4i)×24i,1≤i≤
8. 

4) Guess K13
5-8, K13

13-16, K13
21-24, K13

29-32. From the dependency between the subkeys, K13
21-24 

and K13
29-32 can be obtained through K14. Thus, only K13

5-8 and K13
13-16 need to be guessed. 

Filter out the data pairs such that the difference satisfying ∆L13=(0000 0000 0000 0000 
0000 0000 0000 1000). According to K13

21-24 and K12
29-32, check whether 

∆L13[6,14,22,30,8,16,24,32]=(0000 0000) holds. If so, then filter out the data pairs. Guess 
K13

5-8 and K13
13-16, check whether ∆L13[2,10,18,26,4,12,20,28]=(0000 0000) holds, and 

continue to filter out data pairs that do not meet the requirements. By two rounds of 
filtering, there would be 2m-5×2-16=2m-21 data pairs remaining. The amount of calculations 
is about 2×(2m-5×232+ 2m-13 ×232×28)/4=2m+27. 

5) Guess K12
29-32. From the dependency between the subkeys, K12

29-32 can be obtained 
through K14, check whether ∆L12[8,16,24,32]=(0000) holds, filter data pairs that do not 
meet the requirements. After filtering, there would be 2m-21×2-4=2m-25 data pairs 
remaining. The amount of calculations is about 2×(2m-21×232×28)/8 =2m+17. 

6) Guess K0
5-8, K0

13-16, K0
21-24, K0

29-32. Note that K0
23-24 and K0

29-32 can be obtained through 
K14. It only needs to guess K0

5-8, K0
13-16 and K0

21-22. Filter out the data pairs such that the 
difference satisfying R1= (*0*0 *0*0 *0*0 *0*0 *0*0 *0*0 *0*0 *0*0). According to 
R1=P∙S(R0⨁K0)⨁L0<<<7, filter out the remaining 2m-25×2-6=2m-31 data pairs. The 
amount of calculations is about 2×(2m-25×232×28+2m-35 ×232×28×210)/8 =2m+14. 

7) Guess K1
5-8. According to K1

5-8, check whether ∆R2[2,10,18,26]=(0000) holds, filter out 
data pairs that do not meet the requirements. After filtering, there would be 2m-31×2-4= 
2m-35 data pairs remaining. The amount of calculations is about 2×(2m-31×
232×28×210)/8=2m+17. 

In the above process, a total of 58-bit subkeys need to be guessed. After screening wrong 
keys, there are remaining 

-3558 4 22 1- 2
m−×（ ） candidate keys. When the number of remaining 

candidate keys is less than or equal to 1, the only correct key can be guaranteed to be recovered, 
that is, if 

-3558 4 22 1- 2 1
m−× ≤（ ） , the solution 40.45m ≈  can be obtained. It can be seen that the 

data complexity is 20 40.45 60.452 2 =2× . 

5. Result comparison and analysis 
We found the exact lower bound of the differential active S-boxes in single-key setting. The 
number of more accurate differential active S-box of 10-round is 13 in our paper, while is 12 in 
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[23]. The detailed comparison about the exact lower bounds of differential active S-boxes of 
ESF in single-key setting between our method and [23] is shown in Table 7. 
 

Table 7. The exact lower bounds of differential active S-boxes of ESF in single-key setting  

Rounds 1 2 3 4 5 6 7 8 9 10 11 
Reference [23] 

 
 
 

0 1 2 3 4 6 8 9 11 12 14 
Our method 0 1 2 3 4 6 8 9 11 13 14 

 
Based on the refined linear MILP model, Yin et al. [23] searched 925 8-round 

zero-correlation linear approximation distinguishers by adding input and output constraints in 
each round. Li et al. [27] performed a new 9-round integral distinguisher of ESF based on an 
automated search method. For the key recovery, Li et al. [26] performed an impossible 
differential cryptanalysis on 13-round ESF based on the 8-round truncated impossible 
differential distinguisher, where 48-bit are guessed and the 80-bit master key is recovered. But 
based on the searched 9-round impossible differential distinguisher in single-key setting, an 
impossible differential cryptanalysis on 15-round ESF was performed in this paper, where 
58-bit are guessed and the master key is recovered. 

Furthermore, Xie et al. [25] constructed an 11-round related-key impossible differential 
path by combining the characteristics of the key schedule with the structure of the round 
function. And based on a 11-round impossible differential distinguisher in related-key setting, 
Xie et al. [25] attacked 15-round ESF, where 40-bit key is recovered. In this paper, we 
obtained 14 12-round related-key impossible differential distinguishers of ESF, which is 
currently the longest related-key impossible differential distinguisher of ESF. In addition, 
based on the improved method of finding contradictions, this paper effectively verified the 
impossible differential distinguisher obtained in single- and related-key setting for the first 
time.  

Compared with existing results, this paper achieves the highest round number of attack in 
single-key setting and constructs the longest round of the impossible differential distinguisher 
in related-key setting. The detailed comparison between the existing security analysis results 
and our method for ESF is shown in Table 8. 

Table 8. The compared security analysis results of ESF 

 Cryptanalysis methods Distinguisher 
Rounds Number Attack 

Rounds 
Data 

complexity 
Time 

complexity Reference 

Single- 
Key 

Zero-correlation Linear 8 925 / / / [23] 

Integral Analysis 9 1 / / / [27] 

Truncated Impossible 
Differential 8 / 13 261.99 277.39 [26] 

Impossible Differential 9 2108 15 260.45 270.02 Our method 

Related-
Key 

Impossible Differential 11 1 15 261.5 240.5 [25] 

Impossible Differential 12 14 / / / Our method 
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6. Conclusion 
This paper proposes a more effective MILP model based on the difference and impossible 
difference search model proposed by Sasaki et al., which is combined with the greedy 
algorithm proposed by Sun et al. to simplify the expression of convex hull H-expression, 
reduces constraints in describing XOR and S-box operations, improves cyclic shift and 
description method of bit permutation and reduce the numbers of inequality constraints and 
variables. Also, a new method for finding out the contradictory points of the impossible 
differential distinguisher using temporary variables is proposed for the first time. 

A simplified MILP difference distinguisher search model is constructed for ESF, where a 
more accurate lower bounds of 1~11 rounds difference active S-boxes in single-key setting 
can be obtained. The impossible differential distinguisher is searched and verified in 
single-key/related-key setting. Particularly, the 14 12-round impossible differential 
distinguisher in related-key setting in this paper is the longest. Moreover, based on the  
9-round impossible differential distinguisher in single-key setting, the 15-round impossible 
differential attack of ESF algorithm also is the highest. 
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