• Title/Summary/Keyword: implicit methods

Search Result 286, Processing Time 0.029 seconds

A Scalable Semi-Implicit Method for Realtime Cloth Simulatio (계산량 조정이 가능한 실시간 옷감 시뮬레이션 방법)

  • Kim Myoung-Jun
    • The KIPS Transactions:PartA
    • /
    • v.13A no.2 s.99
    • /
    • pp.177-184
    • /
    • 2006
  • Since well-known explicit methods for cloth simulation were regarded unstable for large time steps or stiff springs, implicit methods have been proposed to achieve the stability. Large time step makes the simulation fast, and large stiffness enables a less elastic cloth property. Also, there have been efforts to devise so-called semi-implicit methods to achieve the stability and the speed together. In this paper we improve Kang's method (Kang and Cho 2002), and thus devise a scalable method for cloth simulation that varies from an almost explicit to a full implicit method. It is almost as fast as explicit methods and, more importantly, almost as stable as implicit methods allowing large time steps and stiff springs. Furthermore, it has a less artificial damping than the previously proposed semi-implicit methods.

Step-wise Combinded Implicit/Explicit Finite Element Simulation of Autobody Stamping Processes (차체 스템핑공정을 위한 스텝형식의 내연적/외연적 결함 유한요소해석)

  • Jung, D.W.;Yang, D.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.86-98
    • /
    • 1996
  • An combined implicit/explicit scheme for the analysis of sheet forming problems has been proposed in this work. In finite element simulation of sheet metal forming processes, the robustness and stability of computation are important requirements since the computation time and convergency become major points of consideration besides the solution accuracy due to the complexity of geometry and boundary conditions. The implicit scheme dmploys a more reliable and rigorous scheme in considering the equilibrium at each step of deformation, while in the explict scheme the problem of convergency is elimented at thecost of solution accuracy. The explicit approach and the implicit approach have merits and demerits, respectively. In order to combine the merits of these two methods a step-wise combined implici/explicit scheme has been developed. In the present work, the rigid-plastic finite element method using bending energy augmented membraneelements(BEAM)(1) is employed for computation. Computations are carried out for some typical sheet forming examples by implicit, combined implicit/explicit schemes including deep drawing of an oil pan, front fender and fuel tank. From the comparison between the methods the advantages and disadvantages of the methods are discussed.

  • PDF

FSAL MONO-IMPLICIT NORDSIECK GENERAL LINEAR METHODS WITH INHERENT RUNGE-KUTTA STABILITY FOR DAES

  • OLATUNJI, P.O.;IKHILE, M.N.O.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.262-295
    • /
    • 2021
  • This paper introduces mono-implicit general linear methods, a special class of general linear methods, which are implicit in the output solution for the numerical integration of differential algebraic equations. We show how L-stable inherent Runge-Kutta members can be derived. The procedures for implementation have been discussed. The numerical test on the problem considered shows that the methods have improved accuracy when compared to RADAU IIA and the results from MATLAB ode15s, which have been taken as our reference solution.

IMPLICIT-EXPLICIT SECOND DERIVATIVE LMM FOR STIFF ORDINARY DIFFERENTIAL EQUATIONS

  • OGUNFEYITIMI, S.E.;IKHILE, M.N.O.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.224-261
    • /
    • 2021
  • The interest in implicit-explicit (IMEX) integration methods has emerged as an alternative for dealing in a computationally cost-effective way with stiff ordinary differential equations arising from practical modeling problems. In this paper, we introduce implicit-explicit second derivative linear multi-step methods (IMEX SDLMM) with error control. The proposed IMEX SDLMM is based on second derivative backward differentiation formulas (SDBDF) and recursive SDBDF. The IMEX second derivative schemes are constructed with order p ranging from p = 1 to 8. The methods are numerically validated on well-known stiff equations.

Papers : Implicit Formulation of Rotor Aeromechanic Equations for Helicopter Flight Simulation (논문 : 헬리콥터 비행 시뮬레이션을 위한 로터운동방정식 유도)

  • Kim, Chang-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.8-16
    • /
    • 2002
  • The implicit formulation of rotor dynamics for helicopter flight simulation has been derived and and presented. The generalized vector kinematics regarding the relative motion between coordinates were expressed as a unified matrix operation and applied to get the inertial velocities and accelerations at arbitaty rotor blade span position. Based on these results the rotor aeromechanic equations for flapping dynamics, lead-lag dynamics and torque dynamics were formulated as an implicit form. Spatial integration methods of rotor dynamic equations along blade span and the expanded applicability of the present implicit formulations for arbitrary hings geometry and hinge sequences have been investigated. Time integration methods for present DAE(Differential Algebraic Equation) to calculate dynamic response calculation are recommenaded as future works.

The Design and Implementation of Implicit Object Classes for Geometric Modeling System (형상 모델링을 위한 음함수 객체의 설계 및 구현)

  • Park, Sang-Kun;Chung, Seong-Youb
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.3
    • /
    • pp.187-199
    • /
    • 2008
  • This paper describes a C++ class hierarchy of implicit objects for geometry modeling and processing. This class structure provides a software kernel for integrating many various models and methods found in current implicit modeling areas. The software kernel includes primitive objects playing a role of unit element in creating a complex shape, and operator objects used to construct more complex shape of implicit object formed with the primitive objects and other operators. In this paper, class descriptions of these objects are provided to better understand the details of the algorithm or implementation, and its instance examples to show the capabilities of the object classes for constructive shape geometry. In addition, solid modeling system shown as an application example demonstrates that the proposed implicit object classes allow us to carry out modern solid modeling techniques, which means they have the capabilities to extend to various applications.

NUMERICAL METHODS SOLVING THE SEMI-EXPLICIT DIFFERENTIAL-ALGEBRAIC EQUATIONS BY IMPLICIT MULTISTEP FIXED STEP SIZE METHODS

  • Kulikov, G.Yu.
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.341-378
    • /
    • 1997
  • We consider three classes of numerical methods for solv-ing the semi-explicit differential-algebraic equations of index 1 and higher. These methods use implicit multistep fixed stepsize methods and several iterative processes including simple iteration, full a2nd modified Newton iteration. For these methods we prove convergence theorems and derive error estimates. We consider different ways of choosing initial approximations for these iterative methods and in-vestigate their efficiency in theory and practice.

A COMPARISON STUDY OF EXPLICIT AND IMPLICIT NUMERICAL METHODS FOR THE EQUITY-LINKED SECURITIES

  • YOO, MINHYUN;JEONG, DARAE;SEO, SEUNGSUK;KIM, JUNSEOK
    • Honam Mathematical Journal
    • /
    • v.37 no.4
    • /
    • pp.441-455
    • /
    • 2015
  • In this paper, we perform a comparison study of explicit and implicit numerical methods for the equity-linked securities (ELS). The option prices of the two-asset ELS are typically computed using an implicit finite diffrence method because an explicit finite diffrence scheme has a restriction for time steps. Nowadays, the three-asset ELS is getting popularity in the real world financial market. In practical applications of the finite diffrence methods in computational finance, we typically use relatively large space steps and small time steps. Therefore, we can use an accurate and effient explicit finite diffrence method because the implementation is simple and the computation is fast. The computational results demonstrate that if we use a large space step, then the explicit scheme is better than the implicit one. On the other hand, if the space step size is small, then the implicit scheme is more effient than the explicit one.

The effects of explicit and implicit pragmatic instruction in Korean request strategies for Chinese learners (명시적 교수와 암시적 교수가 요청 화행 전략 표현 학습에 미치는 효과 비교 연구 - 중국인 한국어 학습자를 대상으로 -)

  • Lee, YeonKyung
    • Journal of Korean language education
    • /
    • v.25 no.1
    • /
    • pp.115-144
    • /
    • 2014
  • The purpose of this paper is to compare the two different instruction methods for Korean learners of academic purposes in learning request expression. Participants were divided into two groups, explicit and implicit group. Both groups viewed several scenes from the drama that involved native speakers interacting in different situations. The instructional treatment for the explicit group included metapragmatic information while the treatment for the implicit group did not. On the other hand, the treatment for the implicit group followed implicit techniques, which were repetition of the video presentation and a script reading activity. This study was made up of a pre-test, a post-test, and a delayed-test. The pre-test was conducted prior to the instructional treatment. The post-test was administered a day after the last instruction and the delayed-test was conducted five weeks after the treatments. Two types of tests, speaking and writing, were used in this study to examine subjects' knowledge of Korean request. The result of this research reveals that implicit treatment was more effective than explicit treatment in Korean learners' request acquisition. This results might have been due to the operationalization of the implicit condition in this study. Implicit instruction may help language learners make rules by themselves through tasks.

Interactive and Intuitive Physics-based Blending Surface Design for the Second Order Algebraic Implicit Surfaces

  • Park, Tae-Jung;Kam, Hyeong-Ryeol;Shin, Seung-Ho;Kim, Chang-Hun
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.6
    • /
    • pp.842-855
    • /
    • 2009
  • We present a physics-based blending method for the second order algebraic implicit surface. Unlike other traditional blending techniques, the proposed method avoids complex mathematical operations and unwanted artifacts like bulge, which have highly limited the application of the second order algebraic implicit surface as a modeling primitive in spite of lots of its excellent properties. Instead, the proposed method provides the designer with flexibility to control the shapes of the blending surface on interactive basis; the designer can check and design the shape of blending surfaces accurately by simply adjusting several physics parameter in real time, which was impossible in the traditional blending methods. In the later parts of this paper, several results are also presented.

  • PDF